计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (4): 554-565.DOI: 10.3778/j.issn.1673-9418.1906001
何云斌,董恒,万静,李松
HE Yunbin, DONG Heng, WAN Jing, LI Song
摘要:
针对密度峰值算法在选取聚类中心时的时间复杂度过高,需要人工选择截断距离并且处理流形数据时有可能出现多个密度峰值,导致聚类准确率下降等问题,提出一种新的密度峰值聚类算法,从聚类中心选择、离群点筛选、数据点分配三方面进行讨论和分析,并给出相应的聚类算法。在聚类中心的选择上采取KNN的思想计算数据点的密度,离群点的筛选和剪枝以及数据点分配则利用Voronoi图的性质,结合数据点的分布特征进行处理,并在最后应用层次聚类的思想以合并相似类簇,提高聚类准确率。实验结果表明:所提算法与实验对比算法相比较,具有较好的聚类效果和准确性。