[1] Chen M S, Han J W, Yu P S. Data mining: an overview from a database perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6): 866-883.
[2] Ester M, Kriegel H, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Aug 2-4, 1996. Menlo Park: AAAI, 1996: 226-231.
[3] Ankerst M, Breunig M M, Kriegel H P, et al. OPTICS: ordering points to identify the clustering structure[C]//Proceedings of the 1999 ACM SIGMOD International Conference on Manag-ement of Data, Philadelphia, Jun 1-3, 1999. New York: ACM, 1999: 49-60.
[4] Jin H, Qian X Z. Optimized density peak clustering algorithm by natural nearest neighbor[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4): 711-720.金辉, 钱雪忠. 自然最近邻优化的密度峰值聚类算法[J]. 计算机科学与探索, 2019, 13(4): 711-720.
[5] Li W J, Yan S Q, Jiang Y, et al. Research on method of self-adaptive dertermination of DBSCAN algorithm parameters[J]. Computer Engineering and Applications, 2019, 55(5): 1-7.李文杰, 闫世强, 蒋莹, 等. 自适应确定DBSCAN算法参数的算法研究[J]. 计算机工程与应用, 2019, 55(5): 1-7.
[6] Hu J, Zhu H W, Mao Y M. DBSCAN clustering algorithm based on adaptive bee colony optimization[J]. Computer Engineering and Applications, 2019, 55(14): 105-114.胡健, 朱海湾, 毛伊敏. 基于自适应蜂群优化的DBSCAN聚类算法[J]. 计算机工程与应用, 2019, 55(14): 105-114.
[7] Wang S, Wang H J, Qin X P, et al. Architecting big data: challenges, studies and forecasts[J]. Chinese Journal of Com-puters, 2011, 34(10): 5-16.王珊, 王会举, 覃雄派, 等. 架构大数据: 挑战、现状与展望[J]. 计算机学报, 2011, 34(10): 5-16.
[8] Wang W L, Zhang Z J, Gao N, et al. Progress of big data analytics methods based on artificial intelligence technology[J]. Computer Integrated Manufacturing Systems, 2019, 25(3): 529-547.王万良, 张兆娟, 高楠, 等. 基于人工智能技术的大数据分析方法研究进展[J]. 计算机集成制造系统, 2019, 25(3): 529-547.
[9] Song J, Sun Z Z, Mao K M, et al. Research advance on Map-Reduce based big data processing platforms and algorithms [J]. Journal of Software, 2017, 28(3): 514-543.宋杰, 孙宗哲, 毛克明, 等. MapReduce大数据处理平台与算法研究进展[J]. 软件学报, 2017, 28(3): 514-543.
[10] Hu X Q, Wu X, Wen L J, et al. Parallel distributed process mining algorithm based on Spark[J]. Computer Integrated Manufacturing Systems, 2019, 25(4): 791-797.胡小强, 吴翾, 闻立杰, 等. 基于Spark的并行分布式过程挖掘算法[J]. 计算机集成制造系统, 2019, 25(4): 791-797.
[11] Wu X D, Zhu X Q, Wu G Q, et al. Data mining with big data[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1): 97-107.
[12] Zhang Y F, Chen S M, Yu G. Efficient distributed density peaks for clustering large data sets in MapReduce[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(12): 3218-3230.
[13] Aljumaily H, Laefer D F, Cuadra D. Urban point cloud mining based on density clustering and MapReduce[J]. Journal of Com-puting in Civil Engineering, 2017, 31(5): 1-11.
[14] Yu Y W, Zhao J D, Wang X D, et al. Cludoop: an efficient distributed density-based clustering for big data using hadoop[J]. International Journal of Distributed Sensor Networks, 2015, 11: 579391.
[15] Li L J, Xi Y. Research on clustering algorithm and its para-llelization strategy[C]//Proceedings of the 2011 International Conference on Computational and Information Sciences, Chengdu, Oct 21-23, 2011. Washington: IEEE Computer Society, 2011: 325-328.
[16] da Silva T L C, Neto A C A, Magalh?es R P, et al. Towards an efficient and distributed DBSCAN algorithm using Map-Reduce[C]//Proceedings of the 16th International Conference on Enterprise Information Systems, Lisbon, Apr 27-30, 2014. Berlin, Heidelberg: Springer, 2014: 75-90.
[17] Noticewala M, Vaghela D. MR-IDBSCAN: efficient parallel incremental DBSCAN algorithm using MapReduce[J]. Inter-national Journal of Computer Applications, 2014, 93(4): 13-18.
[18] Qu Y, Deng W B, Hu F, et al. Algorithm for ordering points to identify clustering structure based on Spark[J]. Computer Science, 2018, 45(1): 97-102.瞿原, 邓维斌, 胡峰, 等. 基于Spark的点排序识别聚类结构算法[J]. 计算机科学, 2018, 45(1): 97-102.
[19] Hosseini B, Kiani K. A robust distributed big data clustering-based on adaptive density partitioning using apache Spark[J]. Symmetry, 2018, 10(8): 342.
[20] Guha S, Rastogi R, Shim K. Cure: an efficient clustering algorithm for large databases[J]. Information Systems, 2001, 26(1): 35-58.
[21] He Y B, Tan H Y, Luo W M, et al. MR-DBSCAN: an efficient parallel density-based clustering algorithm using MapReduce[C]//Proceedings of the 17th IEEE International Conference on Parallel and Distributed Systems, Tainan, China, Dec 7-9, 2011. Washington: IEEE Computer Society, 2011: 473-480.
[22] Song D F, Xu H. Research and parallelization of DBSCAN algorithm[J]. Computer Engineering and Applications, 2018, 54(24): 52-56.宋董飞, 徐华. DBSCAN算法研究及并行化实现[J].计算机工程与应用, 2018, 54(24): 52-56.
[23] Huang F, Zhu Q, Zhou J, et al. Research on the paralleli-zation of the DBSCAN clustering algorithm for spatial data mining based on the Spark platform[J]. Remote Sensing, 2017, 9(12): 1301.
[24] Wang X, Wu Y, Jiang X H, et al. Incremental parallelization of fast clustering based on DBSCAN algorithm under large-scale data set[J]. Computer Applications and Software, 2018, 35(4): 269-275.王兴, 吴艺, 蒋新华, 等. 大规模数据集下基于DBSCAN算法的增量并行化快速聚类[J]. 计算机应用与软件, 2018, 35(4): 269-275.
[25] He Z. The study of the weighted average density self-adaptive clustering algorithm based on grid and its application[D].Changsha: Hunan University, 2012.贺庄. 基于网格的加权平均密度自适应聚类算法及其应用研究[D]. 长沙: 湖南大学, 2012.
[26] Wang W Q, Wang D, Singh V P, et al. Evaluation of information transfer and data transfer models of rain-gauge network design based on information entropy[J]. Environment Research, 2019, 178: 108686.
[27] Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to algorithms[M]. 3rd ed. Cambridge: MIT Press, 2009.
[28] Kim Y, Shim K, Kim M S, et al. DBCURE-MR: an efficient density-based clustering algorithm for large data using Map-Reduce[J]. Information Systems, 2014, 42: 15-35.
[29] Fu L M, Medico E. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data[J]. BMC Bioin-formatics, 2007, 8: 3.
[30] Zahn C T. Graph-theoretical methods for detecting and des-cribing gestalt clusters[J]. IEEE Transactions on Computers, 1970, 20(1): 68-86.
[31] Gionis A, Mannila H, Tsaparas P. Clustering aggregation[J]. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1): 4.
[32] Veenman C J, Reinders M J T, Backer E. A maximum var-iance cluster algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1273-1280. |