[1] Fu H H, Liao J F, Yang J Z, et al. The Sunway TaihuLight supercomputer: system and applications[J]. Science China Information Sciences, 2016, 59(7): 072001.
[2] Top500 committee. The 25th Top500 list on Nov 2018[EB/OL]. [2018-11-13]. https://www.top500.org/lists/2018/11/.
[3] Xu J H, Fu H H, Shi W, et al. Performance tuning and analy-sis for stencil-based applications on POWER8 processor[J]. ACM Transactions on Architecture and Code Optimization, 2018, 15(4): 41.
[4] Araya-Polo M, Cabezas J, Hanzich M, et al. Assessing accelerator-based HPC reverse time migration[J]. IEEE Transactions on Parallel and Distributed Systems, 2010, 22(1): 147-162.
[5] Ortigosa F, Liao Q B, Guitton A, et al. Speeding up RTM velocity model building beyond algorithmics[M]//SEG Tech-nical Program Expanded Abstracts 2008. Society of Explora-tion Geophysicists, 2008: 3219-3223.
[6] Shen H X, Zheng K, Liu Y, et al. Parallel NSGA-II on Sunway many-core processor[J]. Computer Engineering and Applica-tions, 2018, 54(17): 35-40.沈焕学, 郑凯, 刘垚, 等. 申威众核处理器的并行NSGA-II算法[J]. 计算机工程与应用, 2018, 54(17): 35-40.
[7] Cantú-Paz E. Efficient and accurate parallel genetic algo-rithms[M]//Genetic Algorithms & Evolutionary Computation. Boston: Kluwer Academic Publishers, 2000.
[8] Man K F, Tang K S, Kwong S. Genetic algorithms. concepts and designs[J]. Assembly Automation, 1999, 20(1): 86-87.
[9] Williams S, Waterman A, Patterson D. Roofline: an insightful visual performance model for floating-point programs and multicore architectures: UCB/EECS-2008-134[R]. Berkeley: University of California, 2009.
[10] Shalf J, Kamil S, Oliker L, et al. Analyzing ultra-scale applica-tion communication requirements for a reconfigurable hybrid interconnect[C]//Proceedings of the ACM/IEEE SC2005 Con-ference on High Performance Networking and Computing, Seattle, Nov 12-18, 2005. Washington: IEEE Computer Society, 2005: 17.
[11] Sreepathi S, Grodowitz M L, Lim R, et al. Application characterization using Oxbow toolkit and PADS infras-tructure[C]//Proceedings of the 1st International Workshop on Hardware-Software Co-Design for High Performance Com-puting, New Orleans, Nov 16-21, 2014. Piscataway: IEEE,2014: 55-63.
[12] Shen M M, Lu Z H, Wang Y G. Parallel algorithm for para-meter optimization of hydrologic simulation[J]. Computer Engi-neering and Design, 2017, 38(4): 1002-1007.申蒙蒙, 陆忠华, 王彦棡. 水文模拟中并行参数优化算法[J]. 计算机工程与设计, 2017, 38(4): 1002-1007.
[13] Sunway TaihuLight user guide[EB/OL]. [2020-01-15]. http://www.nsccwx.cn/guide/5d47ec278ffa3771592d5baf.
[14] Fu H H, Liao J F, Ding N, et al. Redesigning CAM-SE for peta-scale climate modeling performance and ultra-high resolu-tion on Sunway TaihuLight[C]//Proceedings of the 2017 Inter-national Conference for High Performance Computing, Net-working, Storage and Analysis, Denver, Nov 12-17, 2017. New York: ACM, 2017: 1.
[15] Xu Y T, Fu H H, Gan L, et al. Performance optimization and analysis for different stencil kernels on multi-core and many-core architectures[C]//National Annual Conference on High Performance Computing, Guilin, 2013-10-29: 628-637.徐阳彤, 付昊桓, 甘霖, 等. 多核与众核架构下对不同Stencil的性能优化和分析[C]//全国高性能计算学术年会, 桂林, 2013-10-29: 628-637.
[16] Hong W J, Li K L, Quan Z, et al. PETSc’s heterogeneous par-allel algorithm design and performance optimization on the Sunway TaihuLight system[J]. Chinese Journal of Computers, 2017, 40(9): 2057-2069.洪文杰, 李肯立, 全哲, 等. 面向神威·太湖之光的PETSc可扩展异构并行算法及其性能优化[J]. 计算机学报, 2017,40(9): 2057-2069.
[17] Chen B W, Fu H H, Wei Y W, et al. Simulating the Wen-chuan earthquake with accurate surface topography on Sunway TaihuLight[C]//Proceedings of the 2018 International Conference for High Performance Computing, Networking, Storage, and Analysis, Dallas, Nov 11-16, 2018. Piscataway: IEEE, 2018: 40.
[18] Liang J J, Qu B Y, Suganthan P N, et al. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization: 201212[R]. Zhengzhou: Zhengzhou University, 2013.
[19] Luo J, Baz D E. A survey on parallel genetic algorithms for shop scheduling problems[C]//Proceedings of the 2018 IEEE International Parallel and Distributed Processing Symposium Workshops, Vancouver, May 21-25, 2018. Washington: IEEE Computer Society, 2018: 629-636.
[20] Xu Z G, Lin J, Matsuoka S. Benchmarking SW26010 many-core processor[C]//Proceedings of the 2017 IEEE Interna-tional Parallel and Distributed Processing Symposium Work-shops, Orlando, May 29-Jun 2, 2017. Washington: IEEE Com-puter Society, 2017: 743-752.
[21] Arcuri A, Fraser G. On parameter tuning in search based software engineering[C]//LNCS 6956: Proceedings of the 3rd International Symposium on Search Based Software Engi-neering, Szeged, Sep 10-12, 2011. Berlin, Heidelberg: Sprin-ger, 2011: 33-47.
[22] Durillo J J, Gschwandtner P, Kofler K, et al. Multi-objective region-aware optimization of parallel programs[J]. Parallel Computing, 2019, 83: 3-21.
[23] Wu F, Weimer W, Harman M, et al. Deep parameter optimisa-tion[C]//Proceedings of the Genetic and Evolutionary Com-putation Conference, Madrid, Jul 11-15, 2015. New York:ACM, 2015: 1375-1382.
[24] Cosenza B, Durillo J J, Ermon S, et al. Autotuning stencil computations with structural ordinal regression learning[C]//Proceedings of the 2017 IEEE International Parallel and Distri-buted Processing Symposium, Orlando, May 29-Jun 2, 2017. Washington: IEEE Computer Society, 2017: 287-296.
[25] Zhou Y, He F Z, Hou N, et al. Parallel ant colony optimization on multi-core SIMD CPUs[J]. Future Generation Computer Systems, 2018, 79: 473-487.
[26] Khmelev A, Kochetov Y. A hybrid local search for the split delivery vehicle routing problem[J]. International Journal of Artificial Intelligence, 2015, 13(1): 147-164.
[27] Bramerdorfer G, Zavoianu A C, Silber S, et al. Possibilities for speeding up the FE-based optimization of electrical mach-ines—a case study[J]. IEEE Transactions on Industry Appli-cations, 2016, 52(6): 4668-4677.
[28] Jhajj L S, Singh S. Deadline and cost based ant colony optimization algorithm for scheduling workflow applications in hybrid cloud[J]. International Journal of Scientific & Engineering Research, 2014, 5(10): 1417-1420.
[29] Harmanani H M, Drouby F, Ghosn S B. A parallel genetic algorithm for the open-shop scheduling problem using deter-ministic and random moves[C]//Proceedings of the 2009 Spring Simulation Multiconference, San Diego, Mar 22-27, 2009. New York: ACM, 2009: 30.
[30] Andreolli C, Thierry P, Borges L, et al. Characterization and optimization methodology applied to stencil computations[M]//Reinders J, Jeffers J. High Performance Parallelism Pearls. San Mateo: Morgan Kaufmann, 2015: 377-396. |