[1] Vinayakumar R, Alazab M, Soman K P, et al. Deep learning approach for intelligent intrusion detection system[J]. IEEE Access, 2019, 7: 41525-41550.
[2] Naseer S, Saleem Y, Khalid S, et al. Enhanced network anomaly detection based on deep neural networks[J]. IEEE Access, 2018, 6: 48231-48246.
[3] Hassan M M, Gumaei A, Alsanad A, et al. A hybrid deep learning model for efficient intrusion detection in big data environment[J]. Information Sciences, 2020, 513: 386-396.
[4] Wang Y, Feng X N, Qian T Y, et al. Disguised user intrusion detection based on CNN and LSTM deep network[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(4): 575-585.王毅, 冯小年, 钱铁云, 等. 基于CNN和LSTM深度网络的伪装用户入侵检测[J]. 计算机科学与探索, 2018, 12(4): 575-585.
[5] Vijayanand R, Devaraj D. A novel feature selection method using whale optimization algorithm and genetic operators for intrusion detection system in wireless mesh network[J]. IEEE Access, 2020, 8: 56847-56854.
[6] Labonne M, Olivereau A, Polve B, et al. A cascade-structured meta-specialists approach for neural network-based intrusion detection[C]//Proceedings of the 16th IEEE Consumer Comm-unications & Networking Conference. Piscataway: IEEE, 2019: 1-6.
[7] Lin W H, Lin H C, Wang P, et al. Using convolutional neural networks to network intrusion detection for cyber threats[C]//Proceedings of the 2018 IEEE International Conference on Applied System Innovation. Piscataway: IEEE, 2018: 1107-1110.
[8] Almiani M, Abughazleh A, Alrahayfeh A, et al. Deep recurrent neural network for IoT intrusion detection system[J]. Sim-ulation Modelling Practice and Theory, 2020, 101: 1-20.
[9] Zhang S C, Xie X Y, Xu Y. Intrusion detection method based on dCNN[J]. Journal of Tsinghua University (Natural Science Edition), 2019, 59(1): 46-54.张思聪, 谢晓尧, 徐洋. 基于dCNN的入侵检测方法[J]. 清华大学学报(自然科学版), 2019, 59(1): 46-54.
[10] Alqatf M, Lasheng Y, Alhabib M, et al. Deep learning app-roach combining sparse autoencoder with SVM for network intrusion detection[J]. IEEE Access, 2018, 6: 52843-52856.
[11] Andresini G, Appice A, Mauro N D, et al. Exploiting the auto-encoder residual error for intrusion detection[C]//Proc-eedings of the 2019 IEEE European Symposium on Security and Privacy Workshops. Piscataway: IEEE, 2019: 281-290.
[12] Mirza A H, Cosan S. Computer network intrusion detection using sequential LSTM neural networks autoencoders[C]// Proceedings of the 26th Signal Processing and Communications Applications Conference. Piscataway: IEEE, 2018: 1-4.
[13] Kim T, Suh S C, Kim H J, et al. An encoding technique for CNN-based network anomaly detection[C]//Proceedings of the 2018 International Conference on Big Data. Piscataway: IEEE, 2018: 2960-2965.
[14] Lopez-Martin M, Carro B, Sanchez-Esguevillas A, et al. Shallow neural network with kernel approximation for pred-iction problems in highly demanding data networks[J]. Expert Systems with Applications, 2019, 124: 196-208.
[15] Yan J Q, Jin D, Lee C W, et al. A comparative study of off-line deep learning based network intrusion detection[C]// Proceedings of the 10th International Conference on Ubiquitous and Future Networks. Piscataway: IEEE, 2018: 299-304.
[16] Yang Y Q, Zheng K F, Wu C H, et al. Building an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networks[J]. Applied Sciences, 2019, 9(2): 1-25.
[17] Zhang L, Qian F, Zhao S, et al. Using variational auto-encoders for network representation learning[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(10): 1733-1744.张蕾, 钱峰, 赵姝, 等. 利用变分自编码器进行网络表示学习[J]. 计算机科学与探索, 2019, 13(10): 1733-1744.
[18] Harbola S, Coors V. One dimensional convolutional neural network architectures for wind prediction[J]. Energy Conversion and Management, 2019, 195: 70-75. |