[1] ZHANG Y Y, ZHOU D S, CHEN S Q, et al. Single-image crowd counting via multi-column convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 589-597.
[2] BOOMINATHAN L, KRUTHIVENTI S S S, BABU R V. CrowdNet: a deep convolutional network for dense crowd counting[C]//Proceedings of the 2016 ACM Conference on Multimedia Conference, Amsterdam, Oct 15-19, 2016. New York: ACM, 2016: 640-644.
[3] SAM D B, SURYA S, BABU R V. Switching convolutional neural network for crowd counting[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 4031-4039.
[4] ZHAO X Y. U-GAnet: multi-channel feature reconstruction of population density detection model[J]. Computer Know-ledge and Technology, 2019, 15(35): 197-200.
赵新宇. U-GAnet多通道特征重构人群密度检测模型[J]. 电脑知识与技术, 2019, 15(35): 197-200.
[5] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015: 1-14.
[6] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 770-778.
[7] IDREES H, SALEEMI I, SEIBERT C, et al. Multi-source multi-scale counting in extremely dense crowd images[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, Jun 23-28, 2013. Piscataway: IEEE, 2013: 2547-2554.
[8] SHI M J, YANG Z H, XU C, et al. Revisiting perspective information for efficient crowd counting[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 7271-7280.
[9] LI Y H, ZHANG X F, CHEN D M. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 1091-1100.
[10] CAO X K, WANG Z P, ZHAO Y Y, et al. Scale aggregation network for accurate and efficient crowd counting[C]//LNCS 11209: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 757-773.
[11] SINDAGI V A, PATEL V M. Inverse attention guided deep crowd counting network[C]//Proceedings of the 16th IEEE International Conference on Advanced Video and Signal Based Surveillance, Taipei, China, Sep 18-21, 2019. Piscataway: IEEE, 2019: 1-8.
[12] ZHANG C, LI H S, WANG X G, et al. Cross-scene crowd counting via deep convolutional neural networks[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Piscataway: IEEE, 2015: 833-841.
[13] LIU L B, WANG H J, LI G B, et al. Crowd counting using deep recurrent spatial-aware network[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 849-855.
[14] WANG Q, GAO J Y, LIN W, et al. Learning from synthetic data for crowd counting in the wild[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 8198-8207.
[15] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//Proceedings of the 4th International Conference on Learning Representations, San Juan, May 2-4, 2016: 1-10.
[16] YU F, KOLTUN V, FUNKHOUSER T A. Dilated residual networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 636-644. |