[1] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[2] BROWN T B, KAPLAN J, MANN B, et al. Language models are few-shot learners[J]. arXiv:2005.14165, 2020.
[3] PASZKE A, GROSS S, MASSA F, et al. PyTorch: an impera-tive style, high-performance deep learning library[C]//Pro-ceedings of the Annual Conference on Neural Information Processing System, Vancouver, Dec 8-14, 2019: 8026-8037.
[4] IWANA B K, UCHIDA S. An empirical survey of data aug-mentation for time series classification with neural networks[J]. arXiv:2007.15951, 2020.
[5] ZHU K F, WANG J G, LIU Y J. Radar target recognition algorithm based on data augmentation and WACGAN with a limited training data[J]. Acta Electronica Sinica, 2020, 48(6): 1124-1131.
朱克凡, 王杰贵, 刘有军. 小样本条件下基于数据增强和WACGAN的雷达目标识别算法[J]. 电子学报, 2020, 48(6): 1124-1131.
[6] WEN Q S, SUN L, SONG X M, et al. Time series data aug-mentation for deep learning: a survey[J]. arXiv:2002.12478, 2020.
[7] WEI J, ZOU K. EDA: easy data augmentation techniques for boosting performance on text classification tasks[J]. arXiv:1901.11196, 2019.
[8] ZHOU Y Z, ZHA X Y, LAN J, et al. Transient stability pre-diction of power systems based on deep residual network and data augmentation[J]. Electric Power, 2020, 53(1): 22-31.
周艳真, 查显煜, 兰健, 等. 基于数据增强和深度残差网络的电力系统暂态稳定预测[J]. 中国电力, 2020, 53(1): 22-31.
[9] GAO J K, SONG X M, WEN Q S, et al. RobustTAD: robust time series anomaly detection via decomposition and convo-lutional neural networks[J]. arXiv:2002.09545, 2020.
[10] MCFEE B, HUMPHREY E J, BELLO J P. A software frame-work for musical data augmentation[C]//Proceedings of the 16th International Society for Music Information Retrieval Conference, Málaga, Oct 26-30, 2015. International Society for Music Information Retrieval, 2015: 248-254.
[11] KOBAYASHI S. Contextual augmentation: data augmentation by words with paradigmatic relations[J]. arXiv:1805.06201, 2018.
[12] STEVEN EYOBU O, HAN D S. Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network[J]. Sensors, 2018, 18(9): 2892.
[13] THEILER J, EUBANK S, LONGTIN A, et al. Testing for nonlinearity in time series: the method of surrogate data[J]. Physica D: Nonlinear Phenomena, 1992, 51(8): 77-94.
[14] SCHREIBER T, SCHMITZ A. Improved surrogate data for nonlinearity tests[J]. Physical Review Letters, 1996, 77(4): 635.
[15] LEE T K M, KUAH E Y L, LEO K H, et al. Surrogate rehabilitative time series data for image-based deep learning[C]//Proceedings of the 27th European Signal Processing Conference, A Coru?a, Sep 2-6, 2019. Piscataway: IEEE, 2019: 1-5.
[16] PARK D S, CHAN W, ZHANG Y, et al. SpecAugment: a simple data augmentation method for automatic speech recognition[J]. arXiv:1904.08779, 2019.
[17] CLEVELAND R B, CLEVELAND W S, MCRAE J E, et al. STL: a seasonal-trend decomposition procedure based on Loess[J]. Journal of Official Statistics, 1990, 6(1): 3-33.
[18] KEGEL L, HAHMANN M, LEHNER W. Feature-based comparison and generation of time series[C]//Proceedings of the 30th International Conference on Scientific and Statistical Database Management, Bozen-Bolzano, Jul 9-11, 2018. New York: ACM, 2018: 1-12.
[19] BERGMEIR C, HYNDMAN ROB?J, BENíTEZ JOSé?M. Bagging exponential smoothing methods using STL decom-position and Box-Cox transformation[J]. International Journal of Forecasting, 2016, 32(2): 303-312.
[20] MAKRIDAKIS S, HIBON M. The M3-competition: results, conclusions and implications[J]. International Journal of Fore-casting, 2000, 16(4): 451-476.
[21] KHARITONOV E, RIVIRE M, SYNNAEVE G, et al. Data augmenting contrastive learning of speech representations in the time domain[J]. arXiv:2007.00991, 2020.
[22] LAPTEV N, AMIZADEH S, FLINT I. Generic and scalable framework for automated time-series anomaly detection[C]//Proceedings of the 21st ACM SIGKDD International Con-ference on Knowledge Discovery and Data Mining, Sydney, Aug 10-13, 2015. New York: ACM, 2015: 1939-1947.
[23] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th Inter-national Conference on Neural Information Processing Sys-tems, Montreal, Dec 8-13, 2014. New York: ACM, 2014: 2672-2680.
[24] RADFORD A, METZ L, CHINTALA S. Unsupervised repre-sentation learning with deep convolutional generative adver-sarial networks[J]. arXiv:1511.06434, 2015.
[25] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Piscataway: IEEE, 2017: 2223-2232.
[26] ZHANG A, LIPTON Z C, LI M, et al. Dive into deep learning[EB/OL]. [2020-11-10]. https://d2l.ai/.
[27] DONAHUE J, KR?HENBüHL P, DARRELL T. Adversarial feature learning[J]. arXiv:1605.09782, 2016.
[28] SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6: 60.
[29] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv:1411.1784, 2014.
[30] SUN X, DING X L. Data augmentation method based on generative adversarial networks for facial expression reco-gnition sets[J]. Computer Engineering and Applications, 2020, 56(4): 115-121.
孙晓, 丁小龙. 基于生成对抗网络的人脸表情数据增强方法[J]. 计算机工程与应用, 2020, 56(4): 115-121.
[31] RAMPONI G, PROTOPAPAS P, BRAMBILLA M, et al. T-CGAN: conditional generative adversarial network for data augmentation in noisy time series with irregular sampling[J]. arXiv:1811.08295, 2018.
[32] CHE Z P, CHENG Y, ZHAI S F, et al. Boosting deep learning risk prediction with generative adversarial networks for elec-tronic health records[C]//Proceedings of the 2017 IEEE Inter-national Conference on Data Mining, New Orleans, Nov 18-21, 2017. Washington: IEEE Computer Society, 2017: 787-792.
[33] ZHU F, YE F, FU Y C, et al. Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial net-work[J]. Scientific Reports, 2019, 9(1): 6734.
[34] DONAHUE C, MCAULEY J, PUCKETTE M. Adversarial audio synthesis[J]. arXiv:1802.04208, 2018.
[35] DONAHUE D, RUMSHISKY A. Adversarial text generation without reinforcement learning[J]. arXiv:1810.06640, 2018.
[36] HYLAND S L, ESTEBA C, R?TSCH G. Real-valued (medical) time series generation with recurrent conditional GANs[J]. arXiv:1706.02633, 2017.
[37] YOON J, JARRETT D, VAN DER SCHAAR M. Time-series generative adversarial networks[C]//Proceedings of the Annual Conference on Neural Information Processing Sys-tems, Vancouver, Dec 8-14, 2019: 5509-5519.
[38] NIKOLAIDIS K, KRISTIANSEN S, GOEBEL V, et al. Augmenting physiological time series data: a case study for sleep apnea detection[C]//LNCS 11908: Proceedings of the Joint European Conference on Machine Learning and Know-ledge Discovery in Databases, Würzburg, Sep 16-20, 2019. Berlin, Heidelberg: Springer, 2019: 376-399.
[39] WEI X, LI J, SUN X, et al. Cross-view image generation via mixture generative adversarial network[J/OL]. Acta Auto-matica Sinica[2021-01-24]. https://doi.org/10.16383/j.aas.c190743.
卫星, 李佳, 孙晓, 等. 基于混合生成对抗网络的多视角图像生成算法[J/OL]. 自动化学报[2021-01-24]. https://doi. org/10.16383/j.aas.c190743.
[40] MOGREN O. C-RNN-GAN: continuous recurrent neural networks with adversarial training[J]. arXiv:1611.09904, 2016.
[41] LEE S, HWANG U, MIN S, et al. Polyphonic music genera-tion with sequence generative adversarial networks[J]. arXiv:1710.11418, 2017.
[42] ZHANG H, XIAO N N, LIU P S, et al. G-RNN-GAN for singing voice separation[C]//Proceedings of the 5th Inter-national Conference on Multimedia Systems and Signal Processing, Chengdu, May 28-30, 2020. New York: ACM, 2020: 69-73.
[43] HUANG H X, WU R J, HUANG J B, et al. DCCRGAN: deep complex convolution recurrent generator adversarial network for speech enhancement[J]. arXiv:2012.10732, 2020.
[44] LU S Q, DOU Z C, JUN X, et al. PSGAN: a minimax game for personalized search with limited and noisy click data[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 555-564.
[45] KUSNER M J, HERNáNDEZ-LOBATO J M. GANs for sequences of discrete elements with the Gumbel-softmax distribution[J]. arXiv:1611.04051, 2016.
[46] WANG G T, LI W Q, AERTSEN M, et al. Test-time augmentation with uncertainty estimation for deep learning-based medical image segmentation[J]. arXiv:1807.07356, 2018.
[47] YAO Q H, WANG R X, FAN X M, et al. Multi-class arr-hythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural net-work[J]. Information Fusion, 2020, 53: 174-182.
[48] XIE L X, WANG J D, WEI Z, et al. DisturbLabel: regula-rizing CNN on the loss layer[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recog-nition, Las Vegas, Jun 26-30, 2016. Washington: IEEE Computer Society, 2016: 4753-4762.
[49] ZHENG Q H, ZHAO P H, LI Y, et al. Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification[J]. Neural Computing and Applications, 2020: 1-23.
[50] ZHU X Y, LIU Y F, LI J H, et al. Emotion classification with data augmentation using generative adversarial networks[C]//LNCS 10939: Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining, Mel-bourne, Jun 3-6, 2018. Berlin, Heidelberg: Springer, 2018: 349-360.
[51] MAKHZANI A, SHLENS J, JAITLY N, et al. Adversarial autoencoders[J]. arXiv:1511.05644, 2015.
[52] LIM S K, LOO Y, TRAN N T, et al. DOPING: generative data augmentation for unsupervised anomaly detection with GAN[C]//Proceedings of the 2018 IEEE International Con-ference on Data Mining, Singapore, Nov 17-20, 2018. Washington: IEEE Computer Society, 2018: 1122-1127.
[53] SHENG P Y, YANG Z L, QIAN Y M. GANs for children: a generative data augmentation strategy for children speech recognition[C]//Proceedings of the 2019 IEEE Automatic Speech Recognition and Understanding Workshop, Singapore, Dec 14-18, 2019. Piscataway: IEEE, 2019: 129-135.
[54] TAYLOR L, NITSCHKE G. Improving deep learning with generic data augmentation[C]//Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, Bangalore, Nov 18-21, 2018. Piscataway: IEEE, 2018: 1542-1547.
[55] RASHID K M, LOUIS J. Times-series data augmentation and deep learning for construction equipment activity reco-gnition[J]. Advanced Engineering Informatics, 2019, 42: 100944.
[56] UM T T, PFISTER F M J, PICHLER D, et al. Data aug-mentation of wearable sensor data for Parkinson??s disease monitoring using convolutional neural networks[C]//Procee-dings of the 19th ACM International Conference on Multi-modal Interaction, Glasgow, Nov 13-17, 2017. New York: ACM, 2017: 216-220.
[57] HATAMIAN F N, RAVIKUMAR N, VESAL S, et al. The effect of data augmentation on classification of atrial fibrilla-tion in short single-lead ECG signals using deep neural networks[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, May 4-8, 2020. Piscataway: IEEE, 2020: 1264-1268.
[58] CUBUK E D, ZOPH B, MANé D, et al. AutoAugment: learning augmentation strategies from data[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 113-123.
[59] MINH T N, SINN M, LAM H T, et al. Automated image data preprocessing with deep reinforcement learning[J]. arXiv:1806.05886, 2018.
[60] HU Z T, TAN B W, SALAKHUTDINOV R, et al. Learning data manipulation for augmentation and weighting[C]//Pro-ceedings of the Annual Conference on Neural Information Processing Systems, Vancouver, Dec 8-14, 2019: 15738-15749.
[61] WU Q Y, LI L, YU Z. TextGAIL: generative adversarial imita-tion learning for text generation[J]. arXiv:2004.13796, 2020.
[62] CHEN J Y, WU Y Y, JIA C Y, et al. Customizable text generation via conditional text generative adversarial net-work[J]. Neurocomputing, 2020, 416: 125-135.
[63] PAL M, KUMAR M, PERI R, et al. Meta-learning with latent space clustering in generative adversarial network for speaker diarization[J]. arXiv:2007.09635, 2020. |