[1] LUO H, JIANG W, FAN X, et al. A survey on deep learning based person re-identification[J]. Acta Automatica Sinica, 2019, 45(11): 2032-2049.
罗浩, 姜伟, 范星, 等. 基于深度学习的行人重识别研究进展[J]. 自动化学报, 2019, 45(11): 2032-2049.
[2] ZAJDEL W, ZIVKOVIC Z, KR?SE B J A. Keeping track of humans: have I seen this person before?[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Apr 18-22, 2005. Piscataway: IEEE, 2005: 2081-2086.
[3] LU P, DONG H S, ZHONG S, et al. Person re-identification by cross-view discriminative dictionary learning with metric embedding[J]. Journal of Computer Research and Development, 2019, 56(11): 2424-2437.
陆萍, 董虎胜, 钟珊, 等. 基于跨视角判别词典嵌入的行人再识别[J]. 计算机研究与发展, 2019, 56(11): 2424-2437.
[4] WANG Y, WANG L Q, YOU Y R, et al. Resource aware person re-identification across multiple resolutions[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 8042-8051.
[5] YU W, YANG K Y, YAO H X, et al. Exploiting the complementary strengths of multi-layer CNN features for image retrieval[J]. Neurocomputing, 2017, 237: 235-241.
[6] CHEN B, ZHA Y F, LI Y Q, et al. Person re-identification based on convolutional neural network discriminative feature learning[J]. Acta Optica Sinica, 2018, 38(7): 255-261.
陈兵, 查宇飞, 李运强, 等. 基于卷积神经网络判别特征学习的行人重识别[J]. 光学学报, 2018, 38(7): 255-261.
[7] SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]//LNCS 11208: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 501-518.
[8] FU Y, WEI Y C, ZHOU Y Q, et al. Horizontal pyramid matching for person re-identification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 8295-8302.
[9] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(9): 1904-1916.
[10] ZHENG F, DENG C, SUN X, et al. Pyramidal person re-identification via multi-loss dynamic training[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 8514-8522.
[11] HERMANS A, BEYER L, LEIBE B, et al. In defense of the triplet loss for person re-identification[J]. arXiv:1703.07737, 2017.
[12] WEN Y D, ZHANG K P, LI Z F, et al. A discriminative feature learning approach for deep face recognition[C]// LNCS 9911: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 499-515.
[13] LECUN Y, LEON B, ORR G B, et al. Neural networks: tricks of the trade[M]. Berlin, Heidelberg: Springer, 1996.
[14] ZHANG J. Data sphering: some properties and applications[J]. Annals of the Institute of Statistical Mathematics, 1998, 50(2): 223-240.
[15] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 448-456.
[16] ROSS S, MINEIRO P, LANGFORD J, et al. Normalized online learning[C]//Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, Bellevue, Aug 11-15, 2013: 537-545.
[17] BJORCK N, GOMES C P, SELMAN B, et al. Understanding batch normalization[C]//Proceedings of the 31st Annual Conference on Neural Information Processing Systems, Montréal, Dec 3-8, 2018. Red Hook: Curran Associates, 2018: 7705-7716.
[18] BA J L, KIROS J R, HINTON G E. Layer normalization[J]. arXiv:1607.06450, 2016.
[19] ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization: the missing ingredient for fast stylization[J]. arXiv:1607.08022, 2016.
[20] WU Y X, HE K M. Group normalization[J]. International Journal of Computer Vision, 2020, 128(3): 742-755.
[21] LI B Y, WU F, WEINBERGER K Q, et al. Positional normalization[C]//Proceedings of the 32nd Annual Conference on Neural Information Processing Systems, Vancouver, Dec 8-14, 2019. Red Hook: Curran Associates, 2019: 1620-1632.
[22] ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1116-1124.
[23] RISTANI E, SOLERA F, ZOU R S, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]//LNCS 9914: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-10 and 15-16, 2016. Cham: Springer, 2016: 17-35.
[24] XU L Z, PENG L, ZHU F Z. Pedestrian re-identification method based on multi-task pyramid overlapping matching [J]. Computer Engineering, 2021, 47(1): 239-245.
徐龙壮, 彭力, 朱凤增. 多任务金字塔重叠匹配的行人重识别方法[J]. 计算机工程, 2021, 47(1): 239-245.
[25] LI W, ZHU X T, GONG S G, et al. Harmonious attention network for person re-identification[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 2285-2294.
[26] WEI L H, ZHANG S L, YAO H T, et al. GLAD: global- local-alignment descriptor for pedestrian retrieval[C]//Procee-dings of the 25th ACM International Conference on Multimedia, Mountain View, Oct 23-27, 2017. New York: ACM, 2017: 420-428.
[27] SARFRAZ M S, SCHUMANN A, EBERLE A, et al. A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 420-429.
[28] ERGYS R, CARLO T. Features for multi-target multi-camera tracking and re-identification[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 6036-6046. |