[1] WALTER T, MASSIN P, ERGINAY A, et al. Automatic detection of microaneurysms in color fundus images[J]. Medical Image Analysis, 2007, 11(6): 555-566.
[2] ZHU C Z, XIANG Y, ZOU B J, et al. Retinal vessel segmentation in fundus images using CART and AdaBoost[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(3): 445-451.
朱承璋, 向遥, 邹北骥, 等. 基于分类回归树和AdaBoost的眼底图像视网膜血管分割[J]. 计算机辅助设计与图形学学报, 2014, 26(3): 445-451.
[3] ANWAR S M, MAJID M, QAYYUM A, et al. Medical image analysis using convolutional neural networks: a review[J]. Journal of Medical Systems, 2018, 42(11): 226.
[4] AGARWAL A, GULIA S, CHAUDHARY S, et al. Automatic glaucoma detection using adaptive threshold based technique in fundus image[C]//Proceedings of the 38th International Conference on Telecommunications and Signal Processing, Prague, Jul 9-11, 2015. Piscataway: IEEE, 2015: 416-420.
[5] GANGULY S, GANGULY S, SRIVASTAVA K, et al. An adaptive threshold based algorithm for detection of red lesions of diabetic retinopathy in a fundus image[C]//Proceedings of the 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems, Greater Noida, Nov 7-8, 2014. Piscataway: IEEE, 2014: 91-94.
[6] BALASUBRAMANIAN T, KRISHNAN S, MOHANAKRISHNAN M, et al. HOG feature based SVM classification of glaucomatous fundus image with extraction of blood vessels[C]//Proceedings of the 2016 IEEE Annual India Conference, Bangalore, Dec 16-18, 2016. Piscataway: IEEE, 2016: 1-4.
[7] LIU J, YIN F S, WONG D W K, et al. Automatic glaucoma diagnosis from fundus image[C]//Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, Aug 30-Sep 3, 2011. Piscataway: IEEE, 2011: 3383-3386.
[8] BOKHARI S T, SHARIF M, YASMIN M, et al. Fundus image segmentation and feature extraction for the detection of glaucoma: a new approach[J]. Current Medical Imaging Reviews, 2017, 14(1): 77-87.
[9] SRIDHAR S, RAO K J D S S, HEMANTH N, et al. An efficient blood vessel segmentation from color fundus image[J]. International Journal of Computer Applications, 2015, 119(2): 25-28.
[10] HOSSAIN N I, REZA S. Blood vessel detection from fundus image using Markov random field based image segmentation[C]//Proceedings of the 4th International Conference on Advances in Electrical Engineering, Dhaka, Sep 28-30, 2017. Piscataway: IEEE, 2017: 123-127.
[11] SAMAD R, NASARUDIN M S F, MUSTAFA M, et al. Boundary segmentation and detection of diabetic retinopathy (DR) in fundus image[J]. Journal of the American Society for Horticultural Science, 2015, 77(6): 25-28.
[12] ADAL K M, VAN ETTEN P G, MARTINEZ J P, et al. Detection of retinal changes from illumination normalized fundus images using convolutional neural networks[C]//Proceedings of the Medical Imaging 2017: Computer-Aided Diagnosis, Orlando, Feb 11-16, 2017. San Francisco: SPIE, 2017: 101341N.
[13] ORDó?EZ P F, CEPEDA C M, GARRIDO J, et al. Classification of images based on small local features: a case applied to microaneurysms in fundus retina images[J]. Journal of Medical Imaging, 2017, 4(4): 041309.
[14] DIAZ-PINTO A, MORALES S, NARANJO V, et al. CNNs for automatic glaucoma assessment using fundus images: an extensive validation[J]. BioMedical Engineering OnLine, 2019, 18(1): 29.
[15] XU K L, FENG D W, MI H B. Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image[J]. Molecules, 2017, 22(12): 2054.
[16] PRENTA?I? P, LON?ARI? S. Detection of exudates in fundus photographs using convolutional neural networks[C]//Proceedings of the 2015 9th International Symposium on Image and Signal Processing and Analysis, Zagreb, Sep 7-9, 2015. Piscataway: IEEE, 2015: 188-192.
[17] ZHONG Z Q, YUAN J, TANG X Y. Left-vs-right eye discrimination based on convolutional neural network[J]. Journal of Computer Research and Development, 2018, 55(8): 1667-1673.
钟志权, 袁进, 唐晓颖. 基于卷积神经网络的左右眼识别[J]. 计算机研究与发展, 2018, 55(8): 1667-1673.
[18] MA D M, HE S S, YANG C F, et al. Semantic segmentation based on convolutional neural networks with feature fusion[J]. Computer Engineering and Applications, 2020, 56(10): 193-198.
马冬梅, 贺三三, 杨彩锋, 等. 特征融合型卷积神经网络的语义分割[J]. 计算机工程与应用, 2020, 56(10): 193-198.
[19] LECUN Y, BOSER B E, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551.
[20] GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377.
[21] LECUN Y, BENGIO Y. Convolutional networks for images, speech, and time series[M]//The Handbook of Brain Theory and Neural Networks. Cambridge: MIT Press, 1998.
[22] QU J Y, SUN X, GAO X. Remote sensing image target recognition based on CNN[J]. Foreign Electronic Measurement Technology, 2016, 35(8): 45-50.
曲景影, 孙显, 高鑫. 基于CNN模型的高分辨率遥感图像目标识别[J]. 国外电子测量技术, 2016, 35(8): 45-50.
[23] LI C M, YANG S X, YANG Y, et al. Hyperspectral remote sensing image classification based on maximum overlap pooling convolutional neural network[J]. Sensors, 2018, 18(10): 3587.
[24] HAN Y, CAI J H, ZHOU G G, et al. Advances in shuffled frog leaping algorithm[J]. Computer Science, 2010, 37(7): 16-19.
韩毅, 蔡建湖, 周根贵, 等. 随机蛙跳算法的研究进展[J]. 计算机科学, 2010, 37(7): 16-19.
[25] CUI W H, LIU X B, WANG W, et al. Survey on shuffled frog leaping algorithm[J]. Control and Decision, 2012, 27(4): 481-486.
崔文华, 刘晓冰, 王伟, 等. 混合蛙跳算法研究综述[J]. 控制与决策, 2012, 27(4): 481-486.
[26] XU F, ZHANG G Z. Clustering algorithm based on modified shuffled frog leaping algorithm and K-means[J]. Computer Engineering and Applications, 2013, 49(1): 176-180.
许方, 张桂珠. 一种改进的混合蛙跳和K均值结合的聚类算法[J]. 计算机工程与应用, 2013, 49(1): 176-180.
[27] HOOVER A D, KOUZNETSOVA V, GOLDBAUM M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J]. IEEE Transactions on Medical Imaging, 2000, 19(3): 203-210.
[28] SAUNDERS C, STITSON M O, WESTON J, et al. Support vector machine[J]. Computer Science, 2002, 1(4): 1-28.
[29] LI Z, TIAN X M. Study of soft sensor modeling method based on KPCA-SVM[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, Jun 21-23, 2006. Piscataway: IEEE, 2006: 4876-4880. |