[1] WANG Y, ZHANG H J, HUANG H X. A survey of image semantic segmentation algorithms based on deep learning[J]. Application of Electronic Technique, 2019, 45(6): 23-27.
王宇, 张焕君, 黄海新. 基于深度学习的图像语义分割算法综述[J]. 电子技术应用, 2019, 45(6): 23-27.
[2] TIAN X, WANG L, DING Q. A survey of image semantic segmentation algorithms based on deep learning[J]. Journal of Software, 2019, 30(2): 440-468.
田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2): 440-468.
[3] WEI Y C, ZHAO Y. A review on image semantic segmenta-tion based on DCNN[J]. Journal of Beijing Jiaotong Univer-sity, 2016, 40(4): 82-91.
魏云超, 赵耀. 基于DCNN的图像语义分割综述[J]. 北京交通大学学报, 2016, 40(4): 82-91.
[4] AN Z, XU X P, YANG J H, et al. Design of segmented reality head-up display system based on image semantic segmenta-tion[J]. Acta Optica Sinica, 2018, 38(7): 0710004.
[5] XIONG Z Y, ZHANG G F, WANG J Q. Multi-scale feature extract for image semantic segmentation[J]. Journal of Cen-tral South University for Nationalities (Natural Science Edi-tion), 2017, 36(3): 118-124.
熊志勇, 张国丰, 王江晴. 基于多尺度特征提取的图像语义分割[J]. 中南民族大学学报(自然科学版), 2017, 36(3): 118-124.
[6] YI Z, CRIMINISI A, SHOTTON J, et al. Discriminative semantic segmentation of brain tissue in MR images[C]//LNCS 5762: Proceedings of the 2009 International Confer-ence on Medical Image Computing and Computer-Assisted Intervention. Berlin, Heidelberg: Springer, 2009: 558-565.
[7] WANG H Y, PAN D H, XIA D S. Fast implementation of two-dimensional Otsu adaptive threshold selection algorithm [J]. Acta Auto Matica Sinica, 2007(9): 968-971.
[8] YAMINI B, SABITHA R. Image steganalysis: adaptive color image segmentation using Otsu??s method[J]. Computational & Theoretical Nanoscience, 2017, 14(9): 4502-4507.
[9] HUANG Y, GUO L J, ZHANG R. Integration of global and local correntropy image segmentation algorithm[J]. Image and Graphics, 2018, 20(12): 1619-1628.
[10] CHOY S K, SHU Y L, YU K W, et al. Fuzzy model-based clustering and its application in image segmentation[J]. Pattern Recognition, 2017, 100(68): 141-157.
[11] COATES A, NG A Y. Learning feature representations with K-means[M]//MONTAVON G, ORR G B, MüLLER K R,eds. Neuralnetworks: Tricks of the Trade. Berlin, Heidelberg: Springer, 2012: 561-580.
[12] LIU S T, YIN F L. Image segmentation method based on graph cut and its new development[J]. Acta Auto Matica Sinica, 2012, 38(6): 911-922.
[13] HOJJATOLESLAMI S A, KITTLER J. Region growing: a new approach[J]. IEEE Transactions on Image Processing, 1998, 7(7): 1079-1084.
[14] BOYKOV Y Y, JOLLY M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[C]//Proceedings of the 8th International Conference on Computer Vision, Vancouver, Jul 7-14, 2001. Washing-ton: IEEE Computer Society, 2001: 105-112.
[15] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[16] RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf: an astounding baseline for recogni-tion[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 512-519.
[17] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. arXiv:1411.4038, 2014.
[18] NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation[J]. arXiv:1505.04366, 2015.
[19] LIN G, MILAN A, SHEN C, et al. RefineNet: multi-path refinement networks with identity mappings for high-resolu-tion semantic segmentation[J]. arXiv:1611.06612, 2016.
[20] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Sem-antic image segmentation with deep convolutional nets and fully connected CRFs[J]. arXiv:1412.7062, 2014.
[21] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethink-ing atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017.
[22] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. arXiv:1606.00915, 2016.
[23] CHOLLET F. Xception: deep learning with depthwise se-parable convolutions[J]. arXiv:1610.02357, 2017.
[24] TIAN Z, HE T, SHEN C H, et al. Decoders matter for sem-antic segmentation: data-dependent decoding enables flexible feature aggregation[J]. arXiv:1903.02120, 2019. |