[1] ZHAO W, LIN Y M, HUANG T Y, et al. User opinion extraction based on adaptive crowd labeling with cost constrain[J]. Journal of Computer Applications, 2019, 39(5): 1351-1356.
赵威, 林煜明, 黄涛贻, 等. 成本约束下自适应众包标注的用户观点抽取[J]. 计算机应用, 2019, 39(5): 1351-1356.
[2] ZHANG J, WU X, SHENG V S. Learning from crowdsourced labeled data: a survey[J]. Artificial Intelligence Review, 2016, 46(4): 543-576.
[3] SHENG V S, ZHANG J. Machine learning with crowdsourcing: a brief summary of the past research and future directions[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 9837-9843.
[4] REZAEI A, DAMI S, DANESHJOO P. Multi-document extractive text summarization via deep learning approach[C]//Proceedings of the 2019 5th Conference on Knowledge Based Engineering and Innovation, Tehran, 2019. Piscataway: IEEE, 2019: 680-685.
[5] FERREIRA R, CABRAL L D S, LINS R D, et al. Assessing sentence scoring techniques for extractive text summarization[J]. Expert Systems with Applications, 2013, 40(14): 5755-5764.
[6] MOIRANGTHEM D S, LEE M. Abstractive summarization of long texts by representing multiple compositionalities with temporal hierarchical pointer generator network[J]. Neural Networks, 2020, 124: 1-11.
[7] LIANG Z Y, DU J P, LI C Y. Abstractive social media text summarization using selective reinforced Seq2Seq attention model[J]. Neurocomputing, 2020, 410: 432-440.
[8] GUPTA S, GUPTA S K. Abstractive summarization: an overview of the state of the art[J]. Expert Systems with Applications, 2019, 121(5): 49-65.
[9] ZHANG J, WU M, SHENG V S. Ensemble learning from crowds[J]. IEEE Transactions on Knowledge & Data Engineering, 2019, 31(8): 1506-1519.
[10] FUAD T A, NAYEEM M T, MAHMUD A, et al. Neural sentence fusion for diversity driven abstractive multi-document summarization[J]. Computer Speech & Language, 2019, 58(11): 216-230.
[11] ZHANG Z Q. Single-document summarization based on semantics[J]. Journal of Computer Applications, 2010, 30(6): 1673-1675.
章芝青. 基于语义的单文档自动摘要算法[J]. 计算机应用, 2010, 30(6): 1673-1675.
[12] TESAURO G. Practical issues in temporal difference learning[J]. Machine Learning, 1992, 8: 257-277.
[13] WATKINS C J C H, DAYAN P. Q-learning[J]. Machine Learning, 1992, 8: 279-292.
[14] SUTTON R S, MCALLESTER D A, SINGH S P, et al. Policy gradient methods for reinforcement learning with function approximation[C]//Proceedings of the Advances in Neural Information Processing Systems, Denver, Nov 29-Dec 4, 1999. Cambridge: MIT Press, 2000: 1057-1063.
[15] VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 2094-2100.
[16] GUO L, LI B C, ZHAO J L. Topical word embedding clustering based new event detection within topics[J]. Journal of Chinese Information Processing, 2019, 33(6): 64-71.
郭磊, 李弼程, 赵军磊. 基于主题词向量聚类的话题内新事件检测[J]. 中文信息学报, 2019, 33(6): 64-71.
[17] MA T H, RONG H, HAO Y S, et al. A novel sentiment polarity detection framework for Chinese[J]. IEEE Transactions on Affective Computing, 2019.
[18] RYANG S, ABEKAWA T. Framework of automatic text summarization using reinforcement learning[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Jul 12-14, 2012. Stroudsburg: ACL, 2012: 256-265.
[19] RIOUX C, HASAN S A, CHALI Y. Fear the reaper: a system for automatic multi-document summarization with reinforcement learning[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 681-690.
[20] LI H R, ZHU J N, MA C, et al. Read, watch, listen, and summarize: multi-modal summarization for asynchronous text, image, audio and video[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(5): 996-1009.
[21] ABDI A, SHAMSUDDIN S M, HASAN S, et al. Machine learning-based multi-documents sentiment-oriented summarization using linguistic treatment[J]. Expert Systems with Applications, 2018, 109: 66-85.
[22] NALLAPATI R, ZHAI F F, ZHOU B W. Summarunner: a recurrent neural network based sequence model for extractive summarization of documents[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 3075-3081.
[23] YAO K C, ZHANG L B, LUO T J, et al. Deep reinforcement learning for extractive document summarization[J]. Neurocomputing, 2018, 284: 52-62.
[24] BOYAN J A. Technical update: least-squares temporal difference learning[J]. Machine Learning, 2002, 49(2): 233-246.
[25] PANG C, YIN C H. Chinese text summarization based on classification[J]. Computer Science, 2018, 45(1): 144-147.
庞超, 尹传环. 基于分类的中文文本摘要方法[J]. 计算机科学, 2018, 45(1): 144-147. |