[1] GAO Y, TANG J, HONG R, et al. Camera constraint-free view-based 3D object retrieval[J]. IEEE Transactions on Image Processing, 2011, 21(4): 2269-2281.
[2] CHEN D Y, TIAN X P, SHEN Y T, et al. On visual similarity based 3D model retrieval[J]. Computer Graphics Forum, 2003, 22(3): 223-232.
[3] SUN J, OVSJANIKOV M, GUIBAS L. A concise and provably informative multi-scale signature based on heat diffusion[J]. Computer Graphics Forum, 2009, 28(5): 1383-1392.
[4] OSADA R, FUNKHOUSER T, CHAZELLE B, et al. Shape distributions[J]. ACM Transactions on Graphics, 2002, 21(4): 807-832.
[5] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view con-volutional neural networks for 3D shape recognition[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 945-953.
[6] FENG Y F, ZHANG Z Z, ZHAO X B, et al. GVCNN: group-view convolutional neural networks for 3D shape recogni-tion[C]//Proceedings of the 2018 IEEE Conference on Com-puter Vision and Pattern Recognition, Salt Lake, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 264-272.
[7] MATURANA D, SCHERER S A. VoxNet: a 3D convolutional neural network for real-time object recognition[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Sep 28-Oct 2, 2015. Piscat-away: IEEE, 2015: 922-928.
[8] YANG J, WANG Y M. 3D model recognition and classification based on deep convolution neural network[J]. Journal of Chong-qing University of Posts and Telecommunications (Natural Science Edition), 2019, 31(2): 253-260.
杨军, 王亦民. 基于深度卷积神经网络的三维模型识别[J]. 重庆邮电大学学报(自然科学版), 2019, 31(2): 253-260.
[9] YANG J, WANG S, ZHOU P. Recognition and classification for three-dimensional model based on deep voxel convolution neural network[J]. Acta Optica Sinica, 2019, 39(4): 306-316.
杨军, 王顺, 周鹏. 基于深度体素卷积神经网络的三维模型识别分类[J]. 光学学报, 2019, 39(4): 306-316.
[10] KLOKOV R, LEMPITSKY V S. Escape from cells: deep Kd-networks for the recognition of 3D point cloud models[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 863-872.
[11] BRONSTEIN M, BRUNA J, LE C Y, et al. Geometric deep learning: going beyond Euclidean data[J]. IEEE Signal Pro-cessing Magazine, 2017, 34(4): 18-42.
[12] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Procee-dings of the Annual Conference on Neural Information Pro-cessing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5099-5108.
[13] WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. arXiv:1801.07829, 2018.
[14] ZHANG K, HAO M, WANG J, et al. Linked dynamic graph CNN: learning on point cloud via linking hierarchical features[J]. arXiv:1904.10014, 2019.
[15] CHEN C, FRAGONARA L, TSOURDOS A. GAPNet: graph attention based point neural network for exploiting local feature of point cloud[J]. arXiv:1905.08705, 2019.
[16] LIU X H, HAN Z Z, LIU Y S, et al. Point2sequence: learning the shape representation of 3D point clouds with an attention-based sequence to sequence network[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 8778-8785.
[17] LI Y Y, BU R, SUN M C, et al. PointCNN: convolution on x-transformed points[C]//Proceedings of the Annual Conference on Neural Information Processing Systems, Montréal, Dec 2-8, 2018. Red Hook: Curran Associates, 2018: 820-830.
[18] XU Y F, FAN T Q, XU M Y, et al. SpiderCNN: deep learning on point sets with parameterized convolutional filters[C]//LNCS 11212: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 90-105.
[19] ATZMON M, MARON H, LIPMAN Y. Point convolutional neural networks by extension operators[J]. arXiv:1803.10091, 2018.
[20] ZHANG Y X, RABBAT M. A graph-CNN for 3D point cloud classification[C]//Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Apr 15-20, 2018. Piscataway: IEEE, 2018: 6279-6283.
[21] QI C, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 77-85.
[22] WAN L, ZEILER M D, ZHANG S X, et al. Regularization of neural networks using dropconnect[C]//Proceedings of the 30th International Conference on Machine Learning, Atlanta, Jun 16-21, 2013: 1058-1066.
[23] WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Com-puter Society, 2015: 1912-1920. |