[1] MCCARTNEY E J. Optics of the atmosphere: scattering by molecules and particles[J]. Physics Today, 1976, 10(2): 461-470.
[2] TAN R T. Visibility in bad weather from a single image[C]// Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Jun 24-26, 2008. Wash-ington: IEEE Computer Society, 2008: 1-8.
[3] HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341-2353.
[4] TANG K T, YANG J C, WANG J. Investigating haze-relevant features in a learning framework for image dehazing[C]//Pro-ceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Wash-ington: IEEE Computer Society, 2014: 2995-3002.
[5] BERMAN D, TREIBITZ T, AVIDAN S. Non-local image deha-zing[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 1674-1682.
[6] CAI B, XU X, JIA K, et al. Dehazenet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198.
[7] REN W Q, LIU S, ZHANG H, et al. Single image dehazing via multi-scale convolutional neural neworks[C]//LNCS 9906: Proceedings of the 2016 European Conference on Computer Vision, Amsterdam, Oct 8-10, 2016. Berlin, Heidelberg: Spr-inger, 2016: 154-169.
[8] ZHANG H, PATEL V M. Densely connected pyramid dehazing network[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 3194-3203.
[9] YANG D, SUN J. Proximal dehaze-net: a prior learning-based deep network for single image dehazing[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 729-746.
[10] LI R D, PAN J S, LI Z C, et al. Single image dehazing via conditional generative adversarial network[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 8202-8211.
[11] REN W Q, MA L, ZHANG J W, et al. Gated fusion network for single image dehazing[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 3253-3261.
[12] LIU X H, MA Y R, SHI Z H, et al. GridDehazeNet: attention-based multi-scale network for image dehazing[C]//Proceed-ings of the 2019 IEEE International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 7314-7323.
[13] QU Y Y, CHEN Y Z, HUANG J Y, et al. Enhanced Pix2pix dehazing network[C]//Proceedings of the 2019 IEEE Con-ference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 8160-8168.
[14] DENG Z J, ZHU L, HU X W, et al. Deep multi-model fusion for single-image dehazing[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 2453-2462.
[15] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Con-ference on Artificial Intelligence and Statistics, Fort Lauderdale, Apr 11-13, 2011. Cambridge: MIT Press, 2011: 315-323.
[16] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recogni-tion, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269.
[17] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv:1511.07122, 2015.
[18] JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]//LNCS 9906: Procee-dings of the 2016 European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Berlin, Heidelberg: Springer, 2016: 694-711.
[19] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014.
[20] RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
[21] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[22] LI B, REN W, FU D, et al. Benchmarking single-image deha-zing and beyond[J]. IEEE Transactions on Image Processing, 2018, 28(1): 492-505.
[23] KINGMA D P, BA J. Adam: a method for stochastic optimiza-tion[J]. arXiv:1412.6980, 2014.
[24] LI B Y, PENG X L, WANG Z Y, et al. AOD-Net: all-in-one dehazing network[C]//Proceedings of the 2017 IEEE Interna-tional Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 4770-4778. |