[1] SENYUREK V, IMTIAZ M, BELSARE P, et al. Cigarette smoking detection with an inertial sensor and a smart lighter[J]. Sensors, 2019, 19(3): 570-588.
[2] SENYUREK V Y, IMTIAZ M H, BELSARE P, et al. Smoking detection based on regularity analysis of hand to mouth ges-tures[J]. Biomedical Signal Processing and Control, 2019, 51: 106-112.
[3] WU P, HEIEH J W, CHENG J C, et al. Human smoking event detection using visual interaction clues[C]//Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Aug 23-26, 2010. Washington: IEEE Computer Society, 2010: 4344-4347.
[4] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2012: 1097-1105.
[5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 779-788.
[6] VIOLA P A, JONES M J. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern Recogni-tion, Kauai, Dec 8-14, 2001. Washington: IEEE Computer Society, 2001: 1-1.
[7] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition, San Diego, Jun 20-25, 2005. Washington: IEEE Computer Society, 2005: 886-893.
[8] FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Jun 23-28, 2008. Washington: IEEE Computer Society, 2008: 1-8.
[9] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014.
[10] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceed-ings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2818-2826.
[11] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[12] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2015, 39(6): 1137-1149.
[13] LIN T Y, DOLLáR P, GIRSHICK R B, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 936-944.
[14] DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, Red Hook, May 20, 2016. Red Hook: Curran Associates, 2016: 379-387.
[15] CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[J]. arXiv:1712.00726, 2017.
[16] NEUBECK A, GOOL L J V. Efficient non-maximum suppr-ession[C]//Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, Aug 20-24, 2006. Washington: IEEE Computer Society, 2006: 850-855.
[17] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-16, 2016. Heidelberg: Springer, 2016: 21-37.
[18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2999-3007.
[19] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, 2020. Washington: IEEE Computer Society, 2020: 10778-10787.
[20] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[21] WOO S, PARK J C, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Heidelberg: Springer, 2018: 3-19.
[22] XIE S N, GIRSHICK R, DOLLAR P, et al. Aggregated resi-dual transformations for deep neural networks[C]//Proceed-ings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1492-1500.
[23] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(9): 1904-1916.
[24] MISRA D. Mish: a self regularized non-monotonic neural activation function[J]. arXiv:1908.08681, 2019.
[25] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educa-tional Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 12993-13000.
[26] YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Washington: IEEE Computer Society, 2019: 6023-6032. |