[1] TIAN X, WANG L, DING Q. Review of image semantic segmentation based on deep learning[J]. Journal of Software, 2019, 30(2): 440-468.
田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2): 440-468.
[2] LIANG X Y, LUO C, QUAN J C, et al. Researchon pro-gress of image semantic segmentation based on deep learning[J]. Computer Engineeringand Applications, 2020, 56(2): 18-28.
梁新宇, 罗晨, 权冀川, 等. 基于深度学习的图像语义分割技术研究进展[J]. 计算机工程与应用, 2020, 56(2): 18-28.
[3] KUANG H Y, WU J J. Survey of image semantic segmen-tation based on deep learning[J]. Computer Engineering and Applications, 2019, 55(19): 12-21.
邝辉宇, 吴俊君. 基于深度学习的图像语义分割技术研究综述[J]. 计算机工程与应用, 2019, 55(19): 12-21.
[4] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[5] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[6] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[7] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9.
[8] HE K M, ZHANG X Y, REN S Q, et al. Deep residual-learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 27-30, 2016. Washington: IEEE Com-puter Society, 2016: 770-778.
[9] LIPTON Z C, BERKOWITZ J, ELKAN C. A critical review of recurrent neural networks for sequence learning[J]. arXiv:1506.00019, 2015.
[10] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. arXiv:1406.2661, 2014.
[11] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Reco-gnition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 3431-3440.
[12] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Sema-ntic image segmentation with deep convolutional nets and fully connected crfs[J]. arXiv:1412.7062, 2014.
[13] YU F, KOLTUN V. Multi-scale context aggregationby dilated convolutions[J]. arXiv:1511.07122, 2015.
[14] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deep-lab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[15] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Re-thinking atrous convolution for semantic image segmenta-tion[J]. arXiv:1706.05587, 2017.
[16] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//LNCS 11211: Proceedings of the 15th Eur-opean Conferenceon Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 833-851.
[17] BADRINARAYANAN V, KENDALL A, CIPOLLA R. Seg-net: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[18] RONNEBERGER O, FISCHER P, BROX T. U-Net: convo-lutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Interven-tion, Munich, Oct 5-9, 2015. Berlin, Heidelberg: Springer, 2015: 234-241.
[19] PASZKE A, CHAURASIA A, KIM S, et al. Enet: a deep neural network architecture for real-time semantic segmen-tation[J]. arXiv:1606.02147, 2016.
[20] WANG Y, ZHOU Q, LIU J, et al. Lednet: a lightweight encoder-decoder network for real-time semantic segmenta-tion[C]//Proceedings of the 2019 IEEE International Con-ference on Image Processing, Taipei, China, Sep 22-25, 2019: 1860-1864.
[21] LIU W, RABINOVICH A, BERGA C. ParseNet: looking wider to see better[J]. arXiv:1506.04579, 2015.
[22] LIN G S, MILAN A, SHENC H, et al. Refinenet: multi-path refinement networks for high-resolution semantic seg-mentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1925-1934.
[23] ZHAO H S, SHI J P, QI X J, et al. Pyramids cene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6230-6239.
[24] VISIN F, REMORO A, CHO K, et al. ReSeg: a recurrent neural network-based model for semantic segmentation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Computer Society, 2016: 426-433.
[25] VISIN F, KASTNER K, CHO K, et al. ReNet: a recurrent neural network based alternative toconvolutional networks[J]. arXiv:1505.00393, 2015.
[26] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[27] CHO K, MERRIENBOER B V, GULCEHRE C, et al. Lea-rning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv:1406.1078, 2014.
[28] BYEON W, BREUEL T M, RAUE F, et al. Scene labeling with LSTM recurrent neural networks[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Com-puter Society, 2015: 3547-3555.
[29] LIANG X D, SHEN X H, FENG J S, et al. Semantic object parsing with graph LSTM[C]//LNCS 9905: Proceedings of the 2016 European Conference on Computer Vision, Am-sterdam, Oct 11-14, 2016. Berlin, Heidelberg: Springer, 2016: 125-143.
[30] XIANG Y, FOX D. DA-RNN: semantic mapping with data associated recurrent neural networks[J]. arXiv:1703.03098, 2017.
[31] MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]//Proceedings of the Annual Conference on Neural Information Processing Systems, Montreal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 2204-2212.
[32] LI H C, XIONG P F, AN J, et al. Pyramid attention network for semantic segmentation[J]. arXiv:1805.10180, 2018.
[33] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[J]. arXiv:1809.02983, 2018.
[34] HUANG Z L, WANG X G, HUANG L C, et al. CCNET: criss-cross attention for semantic segmentation[C]//Procee-dings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 603-612.
[35] LUC P, COUPRIE C, CHINTALA S, et al. Semantic segme-ntation using adversarial networks[J]. arXiv:1611.08408, 2016.
[36] SOULY N, SPAMPINATO C, SHAH M. Semi and weakly supervised semantic segmentation using generative adversarial network[J]. arXiv:1703.02382, 2017.
[37] MIRZA M, OSINDERO S. Conditional generative adver-sarial nets[J]. Computer Science, 2014, 27(8): 2672-2680.
[38] HUNG W C, TSAI H Y, LIOU Y T, et al. Adversarial learning for semi-supervised semantic segmentation[J]. arXiv:1802.07934, 2018.
[39] GOULD S, FULTON R, KOLLER D. Decomposing a scene into geometric and semantically consistent regions[C]//Pro-ceedings of the IEEE 12th International Conference on Computer Vision, Kyoto, Sep 27-Oct 4, 2009. Washington: IEEE Computer Society, 2009: 1-8.
[40] LIU C, YUEN J, TORRALBA A. Nonparametric scene par-sing: label transfer via dense scene alignment[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-25, 2009. Washington: IEEE Computer Society, 2009: 1972-1979.
[41] GEIGER A, LENZ P, STILLER C, et al. Vision meets robo-tics: the KITTI dataset[J]. The International Journal of Ro-botics Research, 2013, 32(11): 1231-1237.
[42] ALVAREZ J M, GEVERS T, LECUN Y, et al. Road scene segmentation from a single image[C]//LNCS 7578: Procee-dings of the 2012 European Conference on Computer Vision, Florence, Oct 7-13, 2012. Berlin, Heidelberg: Springer, 2012: 376-389.
[43] ZHANG R, CANDRA S A, VETTER K, et al. Sensor fusion for semantic segmentation of urban scenes[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Automation, Seattle, May 26-30, 2015. Piscataway: IEEE, 2015: 1850-1857.
[44] ROS G, RAMOS S, GRANADOS M, et al. Vision-based offline-online perception paradigm for autonomous driving[C]//Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, Jan 5-9, 2015. Washington: IEEE Computer Society, 2015: 231-238.
[45] HARIHARAN B, ARBELAEZ P, BOURDEV L D, et al. Semantic contours from inverse detectors[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Nov 6-13, 2011. Washington: IEEE Com-puter Society, 2011: 991-998.
[46] EVERINGHAM M, ESLAMI S A, VAN G L, et al. The pascal visual object classes challenge: a retrospective[J]. Inter-national Journal on Computer Vision, 2014, 11(1): 98-136.
[47] MOTTAGHI R, CHEN X, LIU X, et al. The role of context for object detection and semantic segmentation in the wild[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 891-898.
[48] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context[C]//LNCS 8693: Proceedings of the 13th European Conferenceon Computer Vision, Zurich, Sep 6-12, 2014. Berlin, Heidelberg: Springer, 2014: 740-755.
[49] ZHOU B L, ZHAO H, PUIG X, et al. Scene parsing through ADE20K dataset[C]//Proceedings of the 2017 IEEE Confer-ence on Computer Vision and Pattern Recognition, Hono-lulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5122-5130.
[50] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Procee-dings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 3213-3223.
[51] SONG S, LICHTENBERG S P, XIAO J. SUN RGB-D: a RGB-D scene understanding benchmark suite[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 567-576.
[52] GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S O, et al. A review on deep learning techniques applied to semantic segmentation[J]. arXiv:1704.06857, 2017.
[53] LI H C, XIONG P F, FAN H Q, et al. DFANet: deep feature aggregation for real-time semantic segmentation[J]. arXiv:1904.02216, 2019.
[54] ARANI E, MARZBAN S, PATA A, et al. RGPNet: a real-time general purpose semantic segmentation[J]. arXiv:1912. 01394, 2019.
[55] CHARLES R Q, SU H, KAICHUN M, et al. PointNet: deep learning on point sets for 3D classification and seg-mentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 77-85.
[56] HU Q Y, YANG B, ROSA S, et al. RandLA-Net: efficient semantic segmentation of large-scale pointclouds[J]. arXiv:1911.11236, 2019.
[57] LU Y, CHEN Y Y, ZHAO D B, et al. Graph-FCN for image semantic segmentation[J]. arXiv:2001.00335, 2020. |