[1] OBERMEYER Z, EMANUEL E J. Predicting the future-big data, machine learning, and clinical medicine[J]. New Eng-land Journal of Medicine, 2016, 375(13): 1216-1219.
[2] A review of cyber security incidents in 2019 (international)[EB/OL]. [2020-02-10]. https://www.freebuf.com/articles/network/226830.html.
[3] WANG K. A survey on risks of big data privacy[C]//Proceed-ings of the 2017 International Conference on Applications and Techniques in Cyber Security and Intelligence, Ningbo, Jun 16-18, 2017. Berlin, Heidelberg: Springer, 2017: 161-167.
[4] XIONG P, ZHU T Q, WANG X F. A survey on differential privacy and applications[J]. Chinese Journal of Computers, 2014, 37(1): 101-122.
熊平, 朱天清, 王晓峰. 差分隐私保护及其应用[J]. 计算机学报, 2014, 37(1): 101-122.
[5] SWEENEY L. K-anonymity: a model for protecting privacy[J]. International Journal of Uncertainty, Fuzziness and Know-ledge-Based Systems, 2002, 10(5): 557-570.
[6] MACHANAVAJJHALA A, KIFER D, GEHRKE J. L-diver-sity: privacy beyond k-anonymity[J]. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1): 3.
[7] LI N H, LI T C, VENKATASUBRAMANIAN S. t-Closeness: privacy beyond k-anonymity and l-diversity[C]//Proceedings of the 23rd International Conference on Data Engineering, Istanbul, Apr 15-20, 2007. Washington: IEEE Computer Society, 2007: 106-115.
[8] SONG F G, MA T H, TIAN Y, et al. A new method of privacy protection: random k-anonymous[J]. IEEE Access, 2019, 7: 75434-75445.
[9] LI H T, MA J F, FU S. A privacy-preserving data collection model for digital community[J]. Science China (Information Sciences), 2015, 58(3): 1-16.
[10] LI H, GUO F, ZHANG W, et al. (a,k)-anonymous scheme for privacy-preserving data collection in IoT-based healthcare se-rvices systems[J]. Journal of Medical Systems, 2018, 42(3): 56.
[11] PEI M L. An anonymous algorithm based on l-diversity for missing medical data[D]. Zhengzhou: Zhengzhou University, 2019.
裴孟丽. 基于l-diversity面向缺失医疗数据的匿名算法研究[D]. 郑州: 郑州大学, 2019.
[12] XIAO X K, TAO Y F. M-invariance: towards privacy pre-serving re-publication of dynamic datasets[C]//Proceedings of the 2007 ACM SIGMOD International Conference on Manage-ment of Data, Beijing, Jun 12-14, 2007. New York: ACM, 2007: 689-700.
[13] SHI Y, ZHANG Z, CHAO H C, et al. Data privacy protec-tion based on micro aggregation with dynamic sensitive attri-bute updating[J]. Sensors, 2018, 18(7): 2307.
[14] DWORK C. Differential privacy[C]//LNCS 4052: Proceedings of the 33rd International Colloquium on Automata, Languages and Programming, Venice, Jul 10-14, 2006. Berlin, Heidel-berg: Springer, 2006: 1-12.
[15] LI H W, DAI Y S, LIN X D. Efficient e-health data release with consistency guarantee under differential privacy[C]//Proceedings of the 17th International Conference on E-health Networking, Application & Services, Boston, Oct 14-17, 2015. Piscataway: IEEE, 2016: 602-608.
[16] RAISARO J L, TRONCOSO-PASTORIZA J R, MISBACH M, et al. MedCo: enabling secure and privacy-preserving ex-ploration of distributed clinical and genomic data[J]. IEEE/ACM Transactions on Computational Biology and Bioinfor-matics, 2019, 16(4): 1328-1341.
[17] RAISARO J L, CHOI G, PRADERVAND S, et al. Protecting privacy and security of genomic data in i2b2 with homo-morphic encryption and differential privacy[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15(5): 1413-1426.
[18] TANG W J, REN J, DENG K, et al. Secure data aggregation of lightweight e-healthcare IoT devices with fair incentives[J]. IEEE Internet of Things Journal, 2019, 6(5): 8714-8726.
[19] GAFF B M, SUSSMAN H E, GEETTER J. Privacy and big data[J]. Computer, 2014, 47(6): 7-9.
[20] NARAYAN S, GAGNé M, SAFAVI-NAINI R. Privacy pre-serving EHR system using attribute-based infrastructure[C]//Proceedings of the 2nd ACM Cloud Computing Security Work-shop, Chicago, Oct 8, 2010. New York: ACM, 2010: 47-52.
[21] CHOE J, YOO S K. Web-based secure access from multiple patient repositories[J]. International Journal of Medical Infor-matics, 2008, 77(4): 242-248.
[22] YANG Y, ZHENG X H, LIU X M, et al. Cross-domain dyna-mic anonymous authenticated group key management with symptom-matching for e-health social system[J]. Future Gene-ration Computer Systems, 2018, 84: 160-176.
[23] SEN POH G, CHIN J J, YAU W C, et al. Searchable sym-metric encryption: designs and challenges[J]. ACM Comput-ing Surveys, 2017, 50(3): 1-37.
[24] LI J, WANG Q, WANG C, et al. Fuzzy keyword search over encrypted data in cloud computing[C]//Proceedings of the 29th IEEE International Conference on Computer Communi-cations, Joint Conference of the IEEE Computer and Com-munications Societies, San Diego, Mar 15-19, 2010. Piscat-away: IEEE, 2010: 441-445.
[25] WANG C, WANG Q, REN K, et al. Privacy- preserving public auditing for data storage security in cloud computing[C]//Proceedings of the 29th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, San Diego, Mar 15-19, 2010. Piscataway: IEEE, 2010: 525-533.
[26] TAN S, JIA Y. NaEPASC: a novel and efficient public auditing scheme for cloud data[J]. Journal of Zhejiang University-Science C, 2014, 15(9): 794-804.
[27] GARG N, BAWA S. RITS-MHT: relative indexed and time stamped Merkle hash tree based data auditing protocol for cloud computing[J]. Journal of Network and Computer App-lications, 2017, 84: 1-13.
[28] SHEN J, CHEN X F, HUANG X Y, et al. An efficient public auditing protocol with novel dynamic structure for cloud data[J]. IEEE Transactions on Information Forensics & Security, 2017, 12(10): 2402-2415.
[29] SHANG T, ZHANG F, CHEN X Y, et al. Identity-based dynamic data auditing for big data storage[J]. IEEE Trans-actions on Big Data, 2019: 1.
[30] FAN Y K, LIN X D, TAN G, et al. One secure data integrity verification scheme for cloud storage[J]. Future Generation Computer Systems, 2019, 96: 376-385.
[31] YU Y, AU M, ATENIESE G, et al. Identity-based remote data integrity checking with perfect data privacy preserving for cloud storage[J]. IEEE Transactions on Information Foren-sics and Security, 2017, 12(4): 767-778.
[32] ZHANG J, LI P, MAO J. IPad: ID-based public auditing for the outsourced data in the standard model[J]. Cluster Computing, 2016, 19(1): 127-138.
[33] SRINIVAS J, DAS A K, KUMAR N, et al. Cloud centric authentication for wearable healthcare monitoring system[J]. IEEE Transactions on Dependable & Secure Computing, 2020, 17(5): 942-956.
[34] GOPE P, AMIN R. A novel reference security model with the situation based access policy for accessing EPHR data[J]. Journal of Medical Systems, 2016, 40(11): 242.
[35] MA C. Comparative study of large domestic and foreign medi-cal big data resource sharing[J]. Information and Document-ation Services, 2016, 37(3): 63-67.
马灿. 国内外医疗大数据资源共享比较研究[J]. 情报资料工作, 2016, 37(3): 63-67.
[36] SHAMIR A, TAUMAN Y. Improved online/offline signature schemes[C]//LNCS 2139: Proceedings of the 21st Annual International Cryptology Conference Advances in Cryptology, Santa Barbara, Aug 19-23, 2001. Berlin, Heidelberg: Springer, 2001: 355-367.
[37] CHEN X F, ZHANG F G, SUSILO W, et al. Efficient generic on-line/off-line signatures without key exposure[C]//LNCS 4521: Proceedings of the 5th International Conference on Applied Cryptography and Network Security, Zhuhai, Jun 5-8, 2007. Berlin, Heidelberg: Springer, 2017: 18-30.
[38] LIU J H, MA J H, WU W, et al. Protecting mobile health records in cloud computing: a secure, efficient, and anony-mous design[J]. ACM Transactions on Embedded Computing Systems, 2017, 16(2): 57.
[39] ZHANG R, LIU L. Security models and requirements for health-care application clouds[C]//Proceedings of the 2010 IEEE International Conference on Cloud Computing, Miami, Jul 5-10, 2010. Washington: IEEE Computer Society, 2010: 268-275.
[40] KUMAR P, LEE S G, LEE H J. E-SAP: efficient-strong authentication protocol for healthcare applications using wireless medical sensor networks[J]. Sensors, 2012, 12(2):1625-1647.
[41] HE D, KUMAR N, CHEN J, et al. Robust anonymous authen-tication protocol for health-care applications using wireless medical sensor networks[J]. Multimedia Systems, 2015, 21(1): 49-60.
[42] LI X, NIU J, KUMARI S, et al. A new authentication protocol for healthcare applications using wireless medical sensor networks with user anonymity[J]. Security & Communication Networks, 2016, 9(15): 2643- 2655.
[43] WU F, XU L, KUMARI S, et al. An improved and anonymous two-factor authentication protocol for health-care applications with wireless medical sensor networks[J]. Multimedia Sys-tems, 2015, 23(2): 1-11.
[44] AMIN R, ISLAM S H, BISWAS G P, et al. A robust and anonymous patient monitoring system using wireless medical sensor networks[J]. Future Generation Computer Systems, 2018, 80: 483-495.
[45] XIONG H, TAO J, YUAN C. Enabling telecare medical infor-mation systems with strong authentication and anonymity[J]. IEEE Access, 2017, 5: 5648-5661.
[46] FENG C, SHUANG W, JIANG X Q, et al. PRINCESS: pri-vacy-protecting rare disease international network collabo-ration via encryption through software guard extensions[J]. Bioinformatics,2017, 33(6): 871-878.
[47] CHEN F, WANG C, DAI W, et al. PRESAGE: privacy-pre-serving genetic testing via software guard extension[J]. BMC Medical Genomics, 2017, 10(S2): 48.
[48] CHEN F, DOW M, DING S J, et al. PREMIX: privacy-pre-serving estimation of individual admixture[C]//Proceedings of the American Medical Informatics Association Annual Symposium, Chicago, Nov 12-16, 2016: 1747-1755.
[49] WANG W H, CHEN G X, PAN X R, et al. Leaky cauldron on the dark land: understanding memory side-channel hazards in SGX[C]//Proceedings of the 2017 ACM SIGSAC Con-ference on Computer and Communications Security, Dallas, Oct 30-Nov 3, 2017. New York: ACM, 2017: 2421-2434.
[50] SHUANG W, ZHANG Y C, DAI W R, et al. HEALER: hom-omorphic computation of exact logistic regression for secure rare disease variants analysis in GWAS[J]. Bioinformatics,2016, 32(2): 211-218.
[51] CHEON J H, KIM M, LAUTER K E. Homomorphic comput-ation of edit distance[C]//LNCS 8976: Proceedings of the International Conference on Financial Cryptography and Data Security, San Juan, Jan 30, 2015. Berlin, Heidelberg: Spr-inger, 2015: 194-212.
[52] LU W J, YAMADA Y, SAKUMA J. Privacy-preserving genome-wide association studies on cloud environment using fully homomorphic encryption[J]. BMC Medical Informatics & Decision Making, 2015, 15(S5): S1.
[53] GILAD-BACHRACH R, DOWLIN N, LAINE K, et al. Cry-ptonets: applying neural networks to encrypted data with high throughput and accuracy[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 201-210.
[54] KUZU M, KANTARCIOGLU M, INAN A, et?al. Efficient privacy-aware record integration[C]//Proceedings of the 16th International Conference on Extending Database Technology, Genoa, Mar 18-22, 2013. New York: ACM, 2013: 167-178.
[55] ZHANG Y, BLANTON M. Secure distributed genome analysis for GWAS and sequence comparison computation[J]. BMC Medical Informatics & Decision Making, 2015, 15(S5): S4.
[56] WAGH S, GUPTA D, CHANDRAN N. SecureNN: 3-party secure computation for neural network training[J]. Proceed-ings on Privacy Enhancing Technologies, 2019, 3: 26-49.
[57] DANKAR F K, EL EMAM K. Practicing differential privacy in health care: a review[J]. Transactions on Data Privacy, 2013, 6(1): 35-67.
[58] MOHAMMED N, BAROUTI S, ALHADIDI D, et al. Secure and private management of healthcare databases for data mining[C]//Proceedings of the 28th IEEE International Sym-posium on Computer-Based Medical Systems, Sao Carlos, Jun 22-25, 2015. Washington: IEEE Computer Society, 2015: 191-196.
[59] ALNEMARI A, ROMANOWSKI C J, RAJ R K. An ada-ptive differential privacy algorithm for range queries over healthcare data[C]//Proceedings of the 2017 IEEE Inter-national Conference on Healthcare Informatics, Park City, Aug 23-26, 2017. Washington: IEEE Computer Society, 2017: 397-402.
[60] BEAULIEU-JONES B K,YUAN W, FINLAYSON S G, et al. Privacy-preserving distributed deep learning for clinical data[J]. arXiv:1812.01484, 2018.
[61] DONG J S, ROTH A, SU J. Gaussian differential privacy[J]. arXiv:1905.02383, 2019.
[62] LIU X, TSAFTARIS S A. Have you forgotten? A method to assess if machine learning models have forgotten data[C]//LNCS 12261: Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Inter-vention, Lima, Oct 4-8, 2020. Berlin, Heidelberg: Springer,2020: 95-105.
[63] GOLATKAR A, ACHILLE A, SOATTO S. Eternal sunshine of the spotless net: selective forgetting in deep networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Pis-cataway:IEEE, 2020: 9301-9309.
[64] GINART A, GUAN M Y, VALIANT G, et al. Making AI forget you: data deletion in machine learning[C]//Proceed-ings of the Annual Conference on Neural Information Pro-cessing Systems, Vancouver, Dec 8-14, 2019. Red Hook: Curran Associates, 2019: 3513-3526.
[65] BOURTOULE L, CHANDRASEKARAN V, CHOQUETTE-CHOO C, et al. Machine unlearning[J]. arXiv:1912.03817, 2019.
[66] FREDRIKSON M, JHA S, RISTENPART T. Model inver-sion attacks that exploit confidence information and basic countermeasures[C]//Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, Oct 12-16, 2015. New York: ACM, 2015: 1322-1333.
[67] KIM Y, SUN J M, YU H, et al. Federated tensor factoriza-tion for computational phenotyping[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 887-895.
[68] BRISIMI T S, CHEN R, MELA T, et al. Federated learning of predictive models from federated electronic health records[J]. International Journal of Medical Informatics, 2018, 112: 59-67.
[69] LI W, MILLETARì F, XU D, et al. Privacy-preserving federated brain tumour segmentation[C]//LNCS 11861: Inter-national Workshop on Machine Learning in Medical Imag-ing. Cham: Springer, 2019: 133-141. |