[1] HUANG Y, ZHAO C L, ZHAO G, et al. Intelligent technology for educational process mining: research framework, current situation and trend[J]. e-Education Research, 2020, 41(8): 49-57.
黄琰, 赵呈领, 赵刚, 等. 教育过程挖掘智能技术: 研究框架、现状与趋势[J]. 电化教育研究, 2020, 41(8): 49-57.
[2] SHEN Y, TIAN H, ZENG H J, et al. Education in the age of big data: some understandings and reflections—visiting professor Mei Hong, academician of Chinese Academy of Sciences[J]. e-Education Research, 2020, 41(7): 5-10.
沈阳, 田浩, 曾海军, 等. 大数据时代的教育: 若干认识与思考——访中国科学院院士梅宏教授[J]. 电化教育研究, 2020, 41(7): 5-10.
[3] SHI C L, FU S W, CHEN Q, et al. VisMOOC: visualizing video clickstream data from massive open online courses[C]//Pro-ceedings of the 9th IEEE Conference on Visual Analytics Science and Technology, Oct 25-31, 2014. Washington: IEEE Computer Society, 2014: 277-278.
[4] XING W, WADHOLM R R, PETAKOVIC E, et al. Group learning assessment: developing a theory-informed analytics[J]. Educational Technology & Society, 2015, 18(2): 110-128.
[5] QU H M, CHEN Q. Visual analytics for MOOC data[J]. IEEE Computer Graphics & Applications, 2015, 35(6): 69-75.
[6] DENG L J, WANG X G, WANG L L, et al. Knowledge map analysis of ecological development of visual teaching[J]. Distance Education in China, 2016(12): 15-21.
邓烈君, 王小根, 王露露, 等. 可视化教学生态化发展的知识图谱分析[J]. 中国远程教育, 2016(12): 15-21.
[7] XIA M, SUN M, WEI H, et al. PeerLens: peer-inspired inter active learning path planning in online question pool[C]//Proceedings of the CHI Conference on Human Factors in Computing Systems, Glasgow, May 4-9, 2019. New York: ACM, 2019: 634.
[8] HE H, ZHENG Q H, DONG B. LearnerExp: exploring and explaining the time management of online learning activity[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3521-3525.
[9] CHEN Y Z, CHEN Q, ZHAO M Q, et al. DropoutSeer: vis-ualizing learning patterns in massive open online courses for dropout reasoning and prediction[C]//Proceedings of the 2016 IEEE Conference on Visual Analytics Science and Tech-nology, Baltimore, Oct 23-28, 2016. Washington: IEEE Com-puter Society, 2016: 111-120.
[10] DENG H Z, WANG X M, GUO Z Y, et al. PerformanceVis: visual analytics of student performance data from an intro-ductory chemistry course[J]. Visual Informatics, 2019, 3(4): 166-176.
[11] GUERRA J, SCHEIHING E, HENRIQUEZ V, et al. TrAC: visualizing students academic trajectories[C]//Proceedings of the European Conference on Technology Enhanced Lear-ning, Delft, Sep 16-19, 2019. Berlin, Heidelberg: Springer, 2019: 765-768.
[12] CHARLEER S, KLERKX J, DUVAL E, et al. Creating effe-ctive learning analytics dashboards: lessons learnt[C]//LNCS 9891: Proceedings of the 11th European Conference on Tech-nology Enhanced Learning, Lyon, Sep 13-16, 2016. Berlin, Heidelberg: Springer, 2016: 42-56.
[13] MOU Z J, WU F T. Research on the function of learning ana-lysis tool based on educational data[J].Modern Educational Technology, 2017, 27(11): 113-119.
牟智佳, 武法提. 基于教育数据的学习分析工具的功能探究[J]. 现代教育技术, 2017, 27(11): 113-119.
[14] YIN Z H. Educational ability evaluation of Japanese language teacher under MOOC environment[C]//Proceedings of the 2018 International Conference on Intelligent Transportation, Big Data & Smart City, Xiamen, Jan 25-26, 2018. Washington: IEEE Computer Society, 2018: 299-302.
[15] ZHANG Y Z, ZHANG N, WANG Y K, et al. Visualization analysis of big data in China??s education based on CiteSpace[J]. Journal of Xidian University (Social Science Edition), 2020, 30(1): 78-88.
张玉振, 张娜, 王亚凯, 等. 基于CiteSpace的我国教育大数据可视化分析[J]. 西安电子科技大学学报(社会科学版), 2020, 30(1): 78-88.
[16] YANG X M, WANG L H, TANG S S. Application model and policy suggestions of big data in education[J].e-Education Research, 2015, 36(9): 54-61.
杨现民, 王榴卉, 唐斯斯. 教育大数据的应用模式与政策建议[J]. 电化教育研究, 2015, 36(9): 54-61.
[17] YANG X M, TANG S S, LI J H. Technical system frame-work and development trend of education big data—the overall framework of “research and practice column of education big data”[J]. Modern Educational Technology, 2016, 26(1): 5-12.
杨现民, 唐斯斯, 李冀红. 教育大数据的技术体系框架与发展趋势——“教育大数据研究与实践专栏”之整体框架篇[J]. 现代教育技术, 2016, 26(1): 5-12.
[18] DAHDOUH K, DAKKAK A, OUGHDIR L, et al. Big data for online learning systems[J]. Education and Information Technologies, 2018, 23(6): 2783-2800.
[19] CHEN D X, ZHAN Y Y, YANG B. Application analysis of deep learning technology in the field of big data mining in education[J]. e-Education Research, 2019, 40(2): 68-76.
陈德鑫, 占袁圆, 杨兵. 深度学习技术在教育大数据挖掘领域的应用分析[J]. 电化教育研究, 2019, 40(2): 68-76.
[20] BIENKOWSKI M, FENG M Y, MEANS B. Enhancing tea-ching and learning through educational data mining and lear-ning analytics: an issue brief[R]. U.S. Department of Educa-tion. Office of Educational Technology, 2012.
[21] QIU L, LIU Y, LIU Y. An integrated framework with fea-ture selection for dropout prediction in massive open online courses[J]. IEEE Access, 2018, 6: 71474-71484.
[22] MATCHA W, UZIR N A, GASEVIC D, et al. A systematic review of empirical studies on learning analytics dashboards: a self-regulated learning perspective[J]. IEEE Transactions on Learning Technologies, 2019(13): 226-245.
[23] JIVET I, SCHEFFEL M, SPECHT M, et al. License to evaluate: preparing learning analytics dashboards for educational practice[C]//Proceedings of the 8th International Conference on Lear-ning Analytics and Knowledge, Sydney, Mar 7-9, 2018. New York: ACM, 2018: 31-40.
[24] LAW C Y, GRUNDY J C, CAIN A, et al. User perceptions of using an open learner model visualisation tool for facilitating self-regulated learning[C]//Proceedings of the 19th Aus-tralasian Computing Education Conference, Geelong, Jan 31-Feb 3, 2017. New York: ACM, 2017: 55-64.
[25] BARRíA J, SCHEIHING E, PARRA D. Visualizing student participation in a collaborative learning environment[C]//Proceedings of the 25th ACM Hypertext and Social Media Conference, Santiago, Sep 1-4, 2014 :1-2.
[26] CORRIN L, BARBA P D. Exploring students?? interpretation of feedback delivered through learning analytics dashboards[C]//Proceedings of the Australasian Society for Computers in Learning in Tertiary Education, Dunedin, Nov 23-26, 2014: 629-633.
[27] SUDATHA I G W, DEGENG N S, KAMDI W. The effect of visualization type and student spatial abilities on learning achievement[J]. Journal of Baltic Science Education, 2018, 17(4): 551-563.
[28] VIRATA R O, CASTRO J D L. Augmented reality in science classroom: perceived effects in education, visualization and information processing[C]//Proceedings of the 10th Interna-tional Conference on E-Education, E-Business, E-Management and E-Learning, Tokyo, 2019. New York: ACM, 2019: 85-92.
[29] XIA M, WEI H, XU M, et al. Visual analytics of student learning behaviors on K-12 mathematics e-learning platforms[C]// Proceedings of the 2019 IEEE Symposium on Visual Analy-tics Science and Technology, Vancouver, Oct 20-25, 2019. Piscataway: IEEE, 2019: 1-2.
[30] WU T, YAO Y, DUAN Y, et al. NetworkSeer: visual analysis for social network in MOOCs[C]//Proceedings of the IEEE Pacific Visualization Symposium 2016, Taipei, China, Apr 19-22, 2016. Piscataway: IEEE, 2016: 194-198.
[31] WONG J, ZHANG X L. MessageLens: a visual analytics system to support multifaceted exploration of MOOC forum discus-sions[J]. Visual Informatics, 2018, 2(1): 37-49.
[32] ZHENG Y, XU C, LI Y, et al. Measuring and visualizing group knowledge elaboration in online collaborative discussions[J]. Educational Technology & Society, 2018, 21(1): 91-103.
[33] CHEN Q, YUE X, PLANTAZ X, et al. ViSeq: visual analy-tics of learning sequence in massive open online courses[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(3): 1622-1636.
[34] YANG X M, GUO L M, XING B B. Research on regional education big data analysis framework and display design—a case study of a city in Jiangsu Province[J]. e-Education Research, 2020, 41(5): 66-72.
杨现民, 郭利明, 邢蓓蓓. 区域教育大数据分析架构与展示设计研究——以江苏省A市为例[J]. 电化教育研究, 2020, 41(5): 66-72.
[35] CABANBAN-CASEM C L. Analytical visualization of higher education institutions?? big data for decision making[C]//Pro-ceedings of the 2019 Asia Pacific Information Technology Conference, Jeju Island, Jan 25-27, 2019. New York: ACM, 2009: 61-64.
[36] KRUMM A E, WADDINGTON R J, TEASLEY S D, et al. A learning management system-based early warning system for academic advising in undergraduate engineering[M]//LARUSSON J A, WHITE B. Learning Analytics: From Res-earch to Practice. Berlin, Heidelberg: Springer, 2014.
[37] CHARLEER S, MOERE A V, KLERKX J, et al. Learning analytics dashboards to support adviser-student dialogue[J]. IEEE Transactions on Learning Technologies, 2018, 11(3): 389-399.
[38] IWATA T, HOULSBY N, GHAHRAMANI Z. Active learn-ing for interactive visualization[C]//Proceedings of the 16th International Conference on Artificial Intelligence and Stati-stics, Scottsdale, Apr 29-May 1, 2013: 342-350.
[39] HABER R B, MCNABB D A. Visualization idioms: a conce-ptual model for scientific visualization systems[M]//NIELSON G M, SHRIVER B, ROSENBLUM L J, eds. Visualization in Scientific Computing. Berlin, Heidelberg: Springer, 1990.
[40] SHEN E Y. Big data visualization technology and application[J]. Science and Technology Review, 2020, 38(3): 68-83.
沈恩亚. 大数据可视化技术及应用[J]. 科技导报, 2020, 38(3): 68-83.
[41] LI Z, ZHOU D D, DONG X X, et al. Research status, pro-blems and countermeasures of big data in education in China—content analysis based on CNKI academic journals[J]. Mod-ern Distance Education, 2019(1): 46-55.
李振, 周东岱, 董晓晓, 等. 我国教育大数据的研究现状、问题与对策——基于CNKI学术期刊的内容分析[J]. 现代远距离教育, 2019(1): 46-55.
[42] ZHAO Q, ZHANG Z X, SUN T. Research on text visualiza-tion and its main technical methods[J]. Modern Books and Information Technology, 2008(8): 24-30.
赵琦, 张智雄, 孙坦. 文本可视化及其主要技术方法研究[J]. 现代图书情报技术, 2008(8): 24-30.
[43] ZONG P. Research review on key technology of text retrieval and its emerging application[J]. Intelligence Exploration, 2012(10): 77-80.
宗萍. 文本检索关键技术及其新兴应用研究综述[J]. 情报探索, 2012(10): 77-80.
[44] ZHENG Y F. Research on multi-dimensional analysis model and method of online collaboration for automation[D]. Beijing: Beijing Normal University, 2017.
郑娅峰. 面向自动化的在线协作讨论多维分析模型与方法研究[D]. 北京: 北京师范大学, 2017.
[45] CHANG H M, KUO M L, CHEN S C, et al. Developing a data-driven learning interest recommendation system to pro-moting self-paced learning on MOOCs[C]//Proceedings of the 16th International Conference on Advanced Learning Tech-nologies, Austin, Jul 25-28, 2016. Washington: IEEE Computer Society, 2016: 23-25.
[46] COLLINS C, CARPENDALE S, PENN G. DocuBurst: visuali-zing document content using language structure[J]. Computer Graphics Forum, 2009, 28(3): 1039-1046.
[47] WATTENBERG M, VIEGAS F B. The word tree, an inter-active visual concordance[J]. IEEE Transactions on Visuali-zation and Computer Graphics, 2008, 14(6): 1221-1228.
[48] HOQUE E, CARENINI G. ConVis: a visual text analytic sys-tem for exploring blog conversations[J]. Computer Graphics Forum, 2014, 33(3): 221-230.
[49] QI S Y, DU J L, QIAN S S, et al. Research overview of multi-dimensional data visualization technology[J]. Software Guide, 2015, 14(7): 15-17.
戚森昱, 杜京霖, 钱沈申, 等. 多维数据可视化技术研究综述[J]. 软件导刊, 2015, 14(7): 15-17.
[50] SUN Y, FENG X S, Tang J Y, et al. Overview of multi-dimensional visualization technology[J]. Computer Science, 2008, 35(11): 1-7.
孙扬, 封孝生, 唐九阳, 等. 多维可视化技术综述[J]. 计算机科学, 2008, 35(11): 1-7.
[51] DE LAET T, MILLECAMP M, ORTIZ ROJAS M, et al. Adoption and impact of a learning analytics dashboard sup-porting the advisor—student dialogue in a higher education institute in Latin America[J]. British Journal of Educational Technology, 2020, 51(4): 1002-1018.
[52] VIVIAN R, TARMAZDI H, FALKNER K E, et al. The development of a dashboard tool for visualising online team-work discussions[C]//Proceedings of the 37th IEEE/ACM International Conference on Software Engineering, Florence, May 16-24, 2015. Washington: IEEE Computer Society, 2015: 380-388.
[53] SUNG C Y, HUANG X Y, SHEN Y C, et al. ToPIN: a visual analysis tool for time-anchored comments in online educa-tional videos[C]//Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Sys-tems, San Jose, May 7-12, 2016. New York: ACM, 2016: 2185-2191.
[54] CHARLEER S, KLERKX J, SANTOS J L, et al. Improving awareness and reflection through collaborative, interactive visualizations of badges[C]//Proceedings of the 3rd Work-shop on Awareness and Reflection in Technology-Enhanced Learning, Paphos, 2013: 69-81.
[55] REN L, DU Y, MA S, et al. Overview of big data visual analysis[J]. Journal of Software, 2014, 25(9): 1909-1936.
任磊, 杜一, 马帅, 等. 大数据可视分析综述[J]. 软件学报, 2014, 25(9): 1909-1936.
[56] WANG Y, REN S X. Research review of medical big data visualization[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(5): 681-699.
王艺, 任淑霞. 医疗大数据可视化研究综述[J]. 计算机科学与探索, 2017, 11(5): 681-699.
[57] PARDOS Z A, KAO K. moocRP: an open-source analytics platform[C]//Proceedings of the 2nd ACM Conference on Learning, Vancouver, Mar 14-18, 2015. New York: ACM, 2015: 103-110.
[58] ZHU Q, YU J K, WANG M D, et al. Visualization of social network data[J]. Journal of Jilin University (Information Science), 2015, 33(5): 584-587.
朱琪, 于济坤, 王明德, 等. 社会网络数据的可视化[J]. 吉林大学学报(信息科学版), 2015, 33(5): 584-587.
[59] STOLPER C D, KAHNG M, LIN Z, et al. GLO-STIX: graph-level operations for specifying techniques and interactive exp-loration[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 2320-2328.
[60] SAQR M, ALAMRO A. The role of social network analysis as a learning analytics tool in online problem based learning[J]. BMC Medical Education, 2019, 19(1): 1-11.
[61] SAQR M, FORS U, NOURI J. Using social network analy-sis to understand online problem-based learning and predict performance[J]. PLoS ONE, 2018, 13(9): 1-20.
[62] FU S W, WANG Y, YANG Y, et al. VisForum: a visual analy-sis system for exploring user groups in online forums[J]. ACM Transactions on Interactive Intelligent Systems, 2018, 8(1): 1-21.
[63] PARK Y, JO I. Development of the learning analytics dash-board to support students’ learning performance[J]. Journal of Universal Computer Science, 2015, 21(1): 110-133.
[64] JIANG T T, XIAO W D, ZHANG C, et al. Text visuali-zation method for time series based on Sankey diagram[J].Computer Application Research, 2016, 33(9): 2683-2687.
姜婷婷, 肖卫东, 张翀, 等. 基于桑基图的时间序列文本可视化方法[J]. 计算机应用研究, 2016, 33(9): 2683-2687.
[65] GOULDEN M C, GRONDA E, YANG Y, et al. CCVis: visual analytics of student online learning behaviors using course clickstream data[C]//Proceedings of the Visualization and Data Analysis 2019, Burlingame, Jan 16-17, 2019: 1-11.
[66] ZHOU Z G, SHI C, SHI L S, et al. Overview of visual analysis of geospatial data[J]. Journal of Computer-Aided Design and Computer Graphics, 2018, 30(5): 747-763.
周志光, 石晨, 史林松, 等. 地理空间数据可视分析综述[J]. 计算机辅助设计与图形学学报, 2018, 30(5): 747-763.
[67] EMMONS S R, LIGHT R P, B?RNER K. MOOC visual analytics: empowering students, teachers, researchers, and plat-form developers of massively open online courses[J]. Journal of the Association for Information Science and Technology, 2017, 68(10): 2350-2363.
[68] HE H, ZHENG Q H, DONG B. VUSphere: visual analysis of video utilization in online distance education[C]//Proceed-ings of the 13th IEEE Conference on Visual Analytics Science and Technology, Berlin, Oct 21-26, 2018. Piscataway: IEEE, 2018: 25-35.
[69] DERNONCOURT F, TAYLOR C, VEERAMACHANENI K, et al. MoocViz: a large scale, open access, collaborative, data analytics platform for MOOCs[C]//Proceedings of the NIPS 2013 Education Workshop, Lake Tahoe, 2015. Amster-dam: Elsevier Science Publishers, 2013: 1-9.
[70] OECD. Education GPS[EB/OL]. (2015-05-01) [2020-09-04]. https://gpseducation.oecd.org/.
[71] SARKAR M, BROWN M H. Graphical fisheye views of graphs[C]//Proceedings of the 1992 Conference on Human Factors in Computing Systems, Monterey, May 3-7, 1992. New York: ACM, 1992: 83-91.
[72] MUNZNER T, BURCHARD P. Visualizing the structure of the world wide web in 3D hyperbolic space[C]//Procedings of the 1995 Symposium on Virtual Reality Modeling Langu-age, San Diego, Dec 14-15, 1995. New York: ACM, 1995:33-38.
[73] SPENCE R, APPERLEY M. Data base navigation: an office environment for the professional[J]. Behaviour and Infor-mation Technology, 1982, 1(1): 43-54.
[74] MACKINLAY J D, ROBERTSON G G, CARD S K. The perspective wall: detail and context smoothly integrated[C]// Proceedings of the 1991 Conference on Human Factors in Computing Systems, New Orleans, Apr 27-May 2, 1991. New York: ACM, 1991: 173-179.
[75] ZHONG W, LI R C, MA X L, et al. Development trend of learning analysis technology—research and exploration in multi-modal data environment[J]. Distance Education in China, 2018(11): 41-49.
钟薇, 李若晨, 马晓玲, 等. 学习分析技术发展趋向——多模态数据环境下的研究与探索[J]. 中国远程教育, 2018(11): 41-49.
[76] ISENBERG P, FISHER D, PAUL S A, et al. Co-located coll-aborative visual analytics around a tabletop display[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(5): 689-702.
[77] BLOCK F, HORN M S, PHILLIPS B C, et al. The deeptree exhibit: visualizing the tree of life to facilitate informal lear-ning[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2789-2798.
[78] HUANG T, GONG M J, YANG H L, et al. Research on pri-mary school Chinese writing teaching supported by man-machine collaboration[J]. e-Education Research, 2020, 41(2): 108-114.
黄涛, 龚眉洁, 杨华利, 等. 人机协同支持的小学语文写作教学研究[J]. 电化教育研究, 2020, 41(2): 108-114.
[79] PIAGET J. Intellectual evolution from adolescence to adult-hood[J]. Human Development, 1972, 15(1): 1-12.
[80] CARD S K, MACKINLAY J D, SHNEIDERMAN B. Read-ings in information visualization: using vision to think[M]. Orlando: Academic Press, 1999. |