[1] WANG Q W, YING Z L. A face detection algorithm based on Haar-Like T features[J]. Pattern Recognition & Artificial Intelligence, 2015, 28(1): 35-41.
王庆伟, 应自炉. 一种基于Haar-Like T特征的人脸检测算法[J]. 模式识别与人工智能, 2015, 28(1): 35-41.
[2] BHATTACHARYYA A, SAINI R, ROY P P, et al. Recogni-zing gender from human facial regions using genetic algorithm[J]. Soft Computing, 2019, 23(17): 8085-8100.
[3] ZHOU Z, GAN Y, SUN F J. Research of face recognition method based on Gabor and SIFT features[J]. Electronic Tech-nology, 2019, 32(4): 5-9.
周柱, 甘屹, 孙福佳. 一种融合Gabor+SIFT特征的人脸识别算法[J]. 电子科技, 2019, 32(4): 5-9.
[4] YE F, YE X Y, LUO X H, et al. Face recognition based on SA-CRC of multi-layer AR-LBP and WLD feature fusion[J]. Computer Engineering and Applications, 2019, 55(14): 134-141.
叶枫, 叶学义, 罗宵晗, 等. 多层AR-LBP与WLD特征融合的SA-CRC人脸识别[J]. 计算机工程与应用, 2019, 55(14): 134-141.
[5] TOEWS M, ARBEL T. Detection, localization, and sex cla-ssification of faces from arbitrary viewpoints and under occ-lusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(9): 1567-1581.
[6] CORTES C, VLADIMIR V. Support-vector networks[J]. Mac-hine Learning, 1995, 20(3): 273-297.
[7] MOGHADDAM B, YANG M H. Learning gender with sup-port faces[J]. IEEE Transactions on Pattern Analysis and Mac-hine Intelligence, 2002, 24(5): 707-711.
[8] KEKRE H B, SARODE T K, SAVE J K. Performance com-parison of wavelet transforms, generated from orthogonal transforms, in classification of image database[J]. International Journal of Advanced Research in Computer Science and Software Engineering, 2012, 2(12): 10-18.
[9] TIAN Q, TAL A, JAMES J C. Fisher pruning of deep nets for facial trait classification[J]. arXiv:1803.08134, 2018.
[10] MATHIVANAN P, POORNIMA K. Biometric authentication for gender classification techniques: a review[J]. Journal of the Institution of Engineers, 2018, 99(1): 79-85.
[11] LU Y, LAI Z, XU Y, et al. Low-rank preserving projections[J]. IEEE Transactions on Cybernetics, 2016, 46(8): 1900-1913.
[12] LU Y, LAI Z, LI X, et al. Low-rank 2-D neighborhood pre-serving projection for enhanced robust image representation[J]. IEEE Transactions on Cybernetics, 2019, 49(5): 1859-1872.
[13] LUY W, WONG K W, LAI Z H, et al. Robust flexible pre-serving embedding[J]. IEEE Transactions on Cybernetics, 2020, 50(10): 4495-4507.
[14] BALCI K, ATALAY V. PCA for gender estimation: which eigenvectors contribute?[C]//Proceedings of the 16th Inter-national Conference on Pattern Recognition, Quebec City, Aug 11-15, 2002. Washington: IEEE Computer Society, 2002: 30363.
[15] ZHANG T, TANG Y Y, FANG B, et al. Face recognition under varying illumination using gradientfaces[J]. IEEE Tran-sactions on Image Processing, 2009, 18(11): 2599-2606.
[16] RAI P, KHANNA P. A gender classification system robust to occlusion using Gabor features based(2D)2 PCA[J]. Journal of Visual Communication and Image Representation, 2014, 25(5): 1118-1129.
[17] WANG D, MAO Z Y, WU M D. Outlier detection algorithm on shadowed sets clustering[J]. Journal of Frontiers of Com-puter Science and Technology, 2012, 6(11): 985-993.
王丹, 毛紫阳, 吴孟达. 融合Shadowed Sets聚类的离群点检测算法[J]. 计算机科学与探索, 2012, 6(11): 985-993.
[18] ZHOU Y, QIAN X, WANG Z Q. Performance improvement of extension neural network using data selection method based on shadowed sets[J]. Journal of Beijing University of Technology, 2013, 39(3): 430-437.
周玉, 钱旭, 王自强. 基于阴影集数据选择的可拓神经网络性能改进[J]. 北京工业大学学报, 2013, 39(3): 430-437.
[19] SU X H, ZHAO L L, XIE L, et al. Shadowed sets-based sample selection method for fuzzy support vector machine[J]. Journal of Harbin University of Technology, 2012, 44(9): 78-84.
苏小红, 赵玲玲, 谢琳, 等. 阴影集的模糊支持向量机样本选择方法[J]. 哈尔滨工业大学学报, 2012, 44(9): 78-84.
[20] MITRA S, KUNDU P P. Satellite image segmentation with shadowed C-Means[J]. Information Sciences, 2011, 181(17): 3601-3613.
[21] ZHANG H Y, ZHANG T, PEDRYCZ W, et al. Improved adaptive image retrieval with the use of shadowed sets[J]. Pattern Recognition, 2019, 90: 390-403.
[22] GOEL A, VISHWAKARMA V P. Gender classification using KPCA and SVM[C]//Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, Bangalore, May 20-21, 2016. Piscataway: IEEE, 2016: 291-295.
[23] KEKRE H B, SARODE T K, SAVE J K. Gender classi-fication of human faces using class based PCA[J]. Internati-onal Journal of Scientific and Research Publications, 2014, 4(2): 1-9.
[24] DHOMNE A, KUMAR R, BHAN V. Gender recognition through face using deep learning[J]. Procedia Computer Science, 2018, 132: 2-10.
[25] NG C B, TAY Y H, GOI B M. Training strategy for convo-lutional neural networks in pedestrian gender classification[C]//Proceedings of the 2nd International Workshop on Pattern Recognition, Singapore, May 1-3, 2017. Bellingham: SPIE, 2017: 1-5.
[26] LAPUSCHKIN S, BINDER A, MüLLER K R, et al. Und-erstanding and comparing deep neural networks for age and gender classification[C]//Proceedings of the 2017 IEEE Inter-national Conference on Computer Vision Workshops, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 1629-1638.
[27] PEDRYCZ W. Shadowed sets: representing and processing fuzzy sets[J]. IEEE Transactions on Systems, Man and Cyber-netics, Part B, 1998, 28(1): 103-109.
[28] PEDRYCZ W. From fuzzy sets to shadowed sets: interpre-tation and computing[J]. International Journal of Intelligent Systems, 2009, 24(1): 48-61.
[29] QIAN Y H, LIANG J Y, DANG C Y. Knowledge structure, knowledge granulation and knowledge distance in a know-ledge base[J]. International Journal of Approximate Reason-ing, 2009, 50(1): 174-188.
[30] CATTANEO G, CIUCCI D. An algebraic approach to shad-owed sets[J]. Electronic Notes in Theoretical Computer Science, 2003, 82(4): 64-75.
[31] PEDRYCZ W. Interpretation of clusters in the framework of shadowed sets[J]. Pattern Recognition Letters, 2005, 26(15): 2439-2449.
[32] ZHOU J, PEDRYCZ W, MIAO D. Shadowed sets in the characterization of rough-fuzzy clustering[J]. Pattern Recog-nition, 2011, 44(8): 1738-1749.
[33] ZHOU Y, ZHU A F, ZHOU L, et al. Sample data selection method for neural network classifiers[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(6): 39-43.
周玉,朱安福,周林, 等.一种神经网络分类器样本数据选择方法[J]. 华中科技大学学报(自然科学版), 2012, 40(6): 39-43.
[34] ZHANG T, LI Y J, HU H H, et al. A gender classification model based on cross-connected convolutional neural net-works[J]. Journal of Automation, 2016, 42(6): 858-865.
张婷, 李玉鑑, 胡海鹤, 等. 基于跨连卷积神经网络的性别分类模型[J]. 自动化学报, 2016, 42(6): 858-865.
[35] TIAN Q, ARBEL T, CLARK J. Deep LDA-pruned nets for efficient facial gender classification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 512-521.
[36] SHI X C, ZHOU Y T, CHI Y. Face gender recognition based on multi-layer feature fusion convolution neural network with adjustable supervisory function[J]. Application Research of Computers, 2019, 36(3): 940-944.
石学超, 周亚同, 池越. 基于多层特征融合可调监督函数卷积神经网络的人脸性别识别[J]. 计算机应用研究, 2019, 36(3): 940-944.
[37] ASTHANA A, ZAFEIRIOU S, CHENG S Y, et al. Increme-ntal face alignment in the wild[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recog-nition, Columbus, Jun 23-28, 2014. Washington: IEEE Com-puter Society, 2014: 1859-1866.
[38] GONZALEZ-SOSA E, FIéRREZ J, VERA-RODRíGUEZ R, et al. Facial soft biometrics for recognition in the wild: recent works, annotation and COTS evaluation[J]. IEEE Trans-actions on Information Forensics and Security, 2018, 13(8): 2001-2014.
[39] GAJJAR V. 2B3C: 2 box 3 crop of facial image for gender classification with convolutional networks[J]. arXiv:1803.02181, 2018.
[40] CHEN J N, LI S B, GAO Z, et al. Age and gender classi-fication using improved convolutional neural networks[J]. Computer Engineering and Applications, 2018, 54(16): 135-139.
陈济楠, 李少波, 高宗, 等. 基于改进CNN的年龄和性别识别[J]. 计算机工程与应用, 2018, 54(16): 135-139.
[41] MITTAL S. Gender recognition from facial images using convolutional neural network[C]//Proceedings of the 2019 5th International Conference on Image Information Processing, Solan, Nov 15-17, 2019. Piscataway: IEEE, 2019: 347-352.
[42] AFIFI M, ABDELHAMED A. AFIF4: deep gender classifi-cation based on AdaBoost-based fusion of isolated facial features and foggy faces[J]. Journal of Visual Communica-tion and Image Representation, 2019, 62: 77-86.
[43] ZHOU Y, NI H, REN F, et al. Face and gender recognition system based on convolutional neural networks[C]//Procee-dings of the 2019 IEEE International Conference on Mecha-tronics and Automation, Tianjin, Aug 4-8, 2019. Piscataway: IEEE, 2019.
[44] ZHOU Y Y, QIN K. Improved VGG-Net for increasing pre-cision of age and gender prediction[J]. Computer Engineer-ing and Applications, 2019, 55(18): 173-179.
周玉阳,秦科. 改进的VGG网络可提升年龄与性别预测准确率[J]. 计算机工程与应用, 2019, 55(18): 173-179.
[45] LEVI G, HASSNCER T. Age and gender classification using convolutional neural networks[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 34-42.
[46] WOLFSHAAR J V D, KARAABA M F, WIERING M A. Deep convolutional neural networks and support vector mac-hines for gender recognition[C]//Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence, Cape Town, Dec 7-10, 2015. Piscataway: IEEE, 2015: 188-195.
[47] ÖZBULAK G, AYTAR Y, EKENEL H K. How transferable are CNN-based features for age and gender classification?[C]//Proceedings of the 2016 International Conference of the Bio-metrics Special Interest Group, Damrstadt, Sep 21-23, 2016. Piscataway: IEEE, 2016: 39-50. |