[1] LI G L, WANG Y, WANG T, et al. Location-aware publish/subscribe[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, Aug 11-14, 2013. New York: ACM, 2013: 802-810.
[2] CHEN L S, CONG G, CAO X. An efficient query indexing mechanism for filtering geo-textual data[C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, Jun 22-27, 2013. New York: ACM, 2013: 749-760.
[3] YU M H, LI G L, FENG J H. A cost-based method for location- aware publish/subscribe services[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management, Melbourne, Oct 19-2, 2015. New York: ACM, 2015: 693-702.
[4] MAHMOOD A R, ALY A M, AREF W G. FAST: frequency-aware indexing for spatio-textual data streams[C]//Proceedings of the 2018 IEEE 34th International Conference on Data Engineering, Paris, Apr 16-20, 2018. Piscataway: IEEE, 2018: 305-316.
[5] WANG X, ZHANG Y, ZHANG W J, et al. AP-Tree: efficiently support location-aware publish/subscribe[J]. The VLDB Journal, 2015, 24(6): 823-848.
[6] DENG Z, WANG M, WANG L Z, et al. An efficient indexing approach for continuous spatial approximate keyword queries over geo-textual streaming data[J]. International Journal of Geo-Information, 2019, 8(2): 57-76.
[7] GUO L, ZHANG D X, LI G L, et al. Location-aware pub/sub system: when continuous moving queries meet dynamic event streams[C]//Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, May 31-Jun 4, 2015. New York: ACM, 2015: 843-857.
[8] MAHMOOD A R, ALY A M, QADAH T, et al. Tornado: a distributed spatio-textual stream processing system[J]. Procee-dings of the VLDB Endowment, 2015, 8(12): 2020-2023.
[9] MAHMOOD A R, DAGHISTANI A, ALY A M, et al. Adaptive processing of spatial-keyword data over a distributed streaming cluster[C]//Proceedings of the 2018 ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, Nov 6-9, 2018. New York: ACM, 2018: 219-228.
[10] CHEN Z D, CONG G, ZHANG Z J, et al. Distributed publish/subscribe query processing on the spatio-textual data stream[C]//Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering, San Diego, Apr 19-22, 2017. Piscataway: IEEE, 2017: 1095-1106.
[11] CHEN Y, CHEN Z D, CONG G, et al. SSTD: a distributed system on streaming spatio-textual data[J]. Proceedings of the VLDB Endowment, 2020, 13(11): 2284-2296.
[12] HU H Q, LIU Y Q, LI G L, et al. A location-aware publish/subscribe framework for parameterized spatio-textual subscriptions[C]//Proceedings of the 31st IEEE International Conference on Data Engineering, Seoul, Apr 13-17, 2015. Washington: IEEE Computer Society, 2015: 711-722.
[13] YU M H, LI G L, WANG T, et al. Efficient filtering algorithms for location-aware publish/subscribe[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(4): 950-963.
[14] HU J F, CHENG R, WU D, et al. Efficient top-k subscription matching for location-aware publish/subscribe[C]//LNCS 9239: Proceedings of the 14th International Symposium on Spatial and Temporal Databases, Hong Kong, China, Aug 26-28, 2015. Berlin, Heidelberg: Springer, 2015: 333-351.
[15] HULAWALE S, BURGHATE B. A novel RI-tree based top-k subscription matching for location-aware publish/subscribe [J]. International Journal of Advance Research and Innovative Ideas in Education, 2016, 2(3): 3928-3935.
[16] CHEN L S, CONG G, CAO X, et al. Temporal spatial-keyword top-k publish/subscribe[C]//Proceedings of the 31st IEEE International Conference on Data Engineering, Seoul, Apr 13-17, 2015. Washington: IEEE Computer Society, 2015: 255-266.
[17] CHEN L S, SHANG S. Approximate spatio-temporal top-k publish/subscribe[J]. World Wide Web, 2019, 22(5): 2153-2175.
[18] WANG X, ZHANG W J, ZHANG Y, et al. Top-k spatial-keyword publish/subscribe over sliding window[J]. The VLDB Journal, 2017, 26(3): 301-326.
[19] CHEN L S, SHANG S, JENSEN C S, et al. Top-k term publish/subscribe for geo-textual data streams[J]. The VLDB Journal, 2020, 29(5): 1101-1128.
[20] CHEN L S, SHANG S, ZHENG K, et al. Cluster-based subscription matching for geo-textual data streams[C]//Proceedings of the 35th IEEE International Conference on Data Engineering, Macao, China, Apr 8-11, 2019. Piscataway: IEEE, 2019: 890-901.
[21] CHEN L S, SHANG S. Region-based message exploration over spatio-temporal data streams[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 873-880.
[22] GUO L, SHAO J, AUNG H H, et al. Efficient continuous top-k spatial keyword queries on road networks[J]. Geo-Informatica, 2015, 19(1): 29-60.
[23] ZHENG B L, ZHENG K, XIAO X H, et al. Keyword-aware continuous kNN query on road networks[C]//Proceedings of the 32nd IEEE International Conference on Data Engineering, Helsinki, May 16-20, 2016. Washington: IEEE Computer Society, 2016: 871-882.
[24] SALGADO C, CHEEMA M A, ALI M E. Continuous monitoring of range spatial keyword query over moving objects[J]. World Wide Web, 2018, 21(3): 687-712.
[25] OH S, JUNG H R, KIM U M. An efficient processing of range spatial keyword queries over moving objects[C]//Proceedings of the 2018 International Conference on Information Networking, Chiang Mai, Jan 10-12, 2018. Piscataway: IEEE, 2018: 525-530.
[26] QI J Z, ZHANG R, JENSEN C S, et al. Continuous spatial query processing: a survey of safe region based techniques[J]. ACM Computing Surveys, 2018, 51(3): 1-39.
[27] MAGDY A, ALY A M, MOKBEL M F, et al. GeoTrend: spatial trending queries on real-time microblogs[C]//Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Burlingame, Oct 31-Nov 3, 2016. New York: ACM, 2016: 7.
[28] MAGDY A, MOKBEL M F, Elnikety S, et al. Mercury: a memory-constrained spatio-temporal real-time search on microblogs[C]//Proceedings of the 30th International Conference on Data Engineering, Chicago, Mar 31-Apr 4, 2014. Washington: IEEE Computer Society, 2018: 172-183.
[29] ZHANG C Y, ZHANG Y, ZHANG W J, et al. Inverted linear Quadtree: efficient top k spatial keyword search[J]. IEEE Transactions on Knowledge & Data Engineering, 2016, 28(7): 1706-1721.
[30] CHUNG Y C, SU F I, LEE C, et al. Multiple k nearest neighbor search[J]. World Wide Web, 2017, 20(2): 371-398.
[31] CHEN L S, CONG G, JENSEN C S, et al. Spatial keyword query processing: an experimental evaluation[J]. Proceedings of the VLDB Endowment, 2013, 6(3): 217-228. |