[1] LACHHAB F, BAKHOUYA M, OULADSINE R, et al. A con-text-driven platform using Internet of things and data stream processing for heating, ventilation and air conditioning systems control[J]. Journal of Systems and Control Engineering, 2019, 233(7): 877-888.
[2] NAZIR H M, HUSSAIN I, AHMAD I, et al. An improved framework to predict river flow time series data[J]. Env-ironmental Science, 2019, 7(7): e7183.
[3] QIDWAI U, CHAUDHRY J,?JABBAR S, et al. Using casual reasoning for anomaly detection among ECG live data stre-ams in ubiquitous healthcare monitoring systems[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(10): 4085-4097.
[4] XU G Y, HAN M, WANG S F, et al. Summarization of data stream ensemble classification algorithm[J]. Application Research of Computers, 2020, 37(1): 1-8.
许冠英, 韩萌, 王少峰, 等. 数据流集成分类算法综述[J]. 计算机应用研究, 2020, 37(1): 1-8.
[5] ZHANG B F, SU J S, XU X. A class-incremental learning method for multi-class support vector machines in text class-ification[C]//Proceedings of the 2006 International Confere-nce on Machine Learning and Cybernetics, Dalian, Aug 13-16, 2006. Piscataway: IEEE, 2006: 2581-2585.
[6] DA Q, YU Y, ZHOU Z H. Learning with augmented class by exploiting unlabeled data[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 1760-1766.
[7] MASUD M M, GAO J, KHAN L, et al. Classification and novel class detection in concept-drifting data streams under time constraints[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(6): 859-874.
[8] AL-KHATEEB T, MASUD M M, KHAN L, et al. Stream classification with recurring and novel class detection using classbased ensemble[C]//Proceedings of the 12th IEEE Inter-national Conference on Data Mining, Brussels, Dec 10-13, 2012. Washington: IEEE Computer Society, 2012: 31-40.
[9] HAQUE A, KHAN L, BARON M. Semi supervised adap-tive framework for classifying evolving data stream[C]//LNCS 9078: Proceedings of the 19th Pacific-Asia Conference on Ad-vances in Knowledge Discovery and Data Mining, Ho Chi Minh City, May 19-22, 2015. Berlin, Heidelberg: Springer, 2015: 383-394.
[10] HAWKINS D M. Identification of outlier[M]. Berlin, Heidel-berg: Springer, 1980.
[11] ZHANG Y, CHEN J, WANG X F, et al. Application of ran-dom forest on rolling element bearings fault diagnosis[J]. Journal of Computer Engineering and Applications, 2018, 54(6): 100-104.
张钰, 陈珺, 王晓峰, 等. 随机森林在滚动轴承故障诊断中的应用[J]. 计算机工程与应用,?2018,?54(6):?100-104.
[12] XU O Y, LI G H. Anomaly data detection using glowworm optimization and random forest in wireless sensor networks[J]. Journal of Computer Science and Technology, 2018, 12(10): 1633-1644.
许欧阳,李光辉. 萤火虫优化和随机森林的WSN异常数据检测[J]. 计算机科学与探索, 2018, 12(10): 1633-1644.
[13] ZHAO Q H, ZHANG Y H, MA J F, et al. Research on cla-ssification algorithm of imbalanced datasets based on im-proved SMOTE[J]. Computer Engineering and Applications, 2018, 54(18): 168-173.
赵清华, 张艺豪, 马建芬, 等. 改进SMOTE的非平衡数据集分类算法研究[J]. 计算机工程与应用,?2018,?54(18):?168-173.
[14] LIU F T, TING K M, ZHOU Z H. Isolation-based anomaly det-ection[J]. ACM Transcations on Knowledge Discovery from Data, 2012, 6(1): 1-39.
[15] MU X, TING K M, ZHOU Z H. Classification under strea-ming emerging new classes: a solution using completely-random trees[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 8(1): 1605-1618.
[16] BREUNIG M M, KRIEGAEL H, NG R T, et al. LOF: identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Manag-ement of Data, Dallas, May 16-18, 2000. New York: ACM, 2000: 93-104.
[17] CHANG C C, LIN C J. LIBSVM: a library for support vec-tor machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27.
[18] HAN J W, KAMBER M. Data mining: concepts and tech-niques[M]. 3rd ed. Beijing: China Machine Press, 2012.
HAN J W, KAMBER M. 数据挖掘: 概念与技术[M]. 范明, 孟小峰, 译. 3版. 北京: 机械工业出版社, 2012. |