[1] WANG Z Y, YAO L G, CAI Y W. Rolling bearing fault dia-gnosis using generalized refined composite multiscale sample entropy and optimized support vector machine[J]. Measure-ment, 2020, 156(3): 107574.
[2] LI J M, YAO X F, WANG X D. Multiscale local features lear-ning based on BP neural network for rolling bearing intelli-gent fault diagnosis[J]. Measurement, 2020, 153(1): 107419.
[3] LI X, ZHANG W, DING Q. Understanding and improving deep learning-based rolling bearing fault diagnosis with atten-tion mechanism[J]. Signal Processing, 2019, 161(8): 136-154.
[4] LU S L, HE Q, ZHAO J W. Bearing fault diagnosis of a per-manent magnet synchronous motor via a fast and online order analysis method in an embedded system[J]. Mechani-cal Systems and Signal Processing, 2018, 113(12): 36-49.
[5] LIU C, CHENG G, LIU B. Bearing fault diagnosis method with unknown variable speed on multi-curve extraction and selection[J]. Measurement, 2020, 153(1): 107437.
[6] HE M, HE D. A new hybrid deep signal processing approach for bearing fault diagnosis using vibration signals[J]. Neuro-computing, 2019, 24(4): 107523-107531.
[7] GU Y K, ZENG L, QIU G Q. Bearing fault diagnosis with varying conditions using angular domain resampling tech-nology, SDP and DCNN[J].Measurement, 2020, 156(3): 107616.
[8] HOANG D T, KANG H J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image[J]. Cognitive Systems Research, 2019, 53(1): 42-50.
[9] ISLAM M, KIM J M. Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep convolutional neural network[J]. Computers in Indu-stry, 2019, 106(4): 142-153.
[10] SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]//Proceedings of the Advances in Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 3856-3866.
[11] ZHU Z Y, PENG G L, CHEN Y H. A convolutional neural net-work based on a capsule network with strong generaliza-tion for bearing fault diagnosis[J]. Neurocomputing, 2019, 323(1): 62-75.
[12] CHEN T Y, WANG Z H, YANG X. A deep capsule neural net-work with stochastic delta rule for bearing fault diagnosis on raw vibration signals[J]. Measurement, 2019, 148(12): 106857.
[13] ZHANG W. Study on bearing fault diagnosis algorithm based on convolutional neural network[D]. Harbin: Harbin Institute of Technology, 2017.
张伟. 基于卷积神经网络的轴承故障诊断算法[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[14] ZHANG J Q, SUN Y, GUO Y. A new bearing fault diagnosis method based on modified convolutional neural networks[J]. Chinese Journal of Aeronautics, 2020, 33(2): 439-447.
[15] LU C, WANG Z, ZHOU B. Intelligent fault diagnosis of roll-ing bearing using hierarchical convolutional network based health state classification[J]. Advanced Engineering Infor-matics, 2017, 32(4): 139-151.
[16] CHEN Z Y, GRYLLIAS K, LI W H. Mechanical fault diagnosis using convolutional neural networks and extreme learning machine[J]. Mechanical Systems and Signal Processing, 2019, 133(11): 106272.
[17] SUN C, YANG Z H, WANG L. Attention guided capsule net-works for chemical-protein interaction extraction[J]. Journal of Biomedical Informatics, 2020, 103(3): 103392.
[18] ZHENG Y P, LI G Y, LI Y. Survey of application of deep lear-ning in image recognition[J]. Computer Engineering and App-lications, 2019, 55(12): 20-36.
郑远攀, 李广阳, 李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用, 2019, 55(12): 20-36.
[19] PENG D L, ZHANG D D, LIU C,et al. BG-SAC: entity relationship classification model based on self-attention sup-ported capsule networks[J]. Applied Soft Computing, 2020, 91(6): 106186-106194.
[20] LEI K, FU Q A, YANG M. Tag recommendation by text classi-fication with attention-based capsule network[J]. Neurocom-puting, 2020, 28(1): 1016-1022.
[21] CHEN H, LI G Y, QI R H, et al. Capsule network??s applica-tion in knowledge graph completion[J]. Computer Engineer-ing and Applications, 2020, 56(8): 110-116.
陈恒, 李冠宇, 祁瑞华, 等. 胶囊网络在知识图谱补全中的应用[J]. 计算机工程与应用, 2020, 56(8): 110-116.
[22] LIU J, LI Y L, LIN M. Research of short text multi-intent detection with capsule network[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(10): 1735-1743.
刘娇, 李艳玲, 林民. 胶囊网络用于短文本多意图识别的研究[J]. 计算机科学与探索, 2020, 14(10): 1735-1743.
[23] GUO L Q, CAO X, LIU L. Dual-tree biquaternion wavelet transform and its application to color image fusion[J]. Signal Processing, 2020, 171(6): 107513.
[24] LEE S J, KIM J H. Discrete wavelet transform-based denois-ing technique for advance state-of-charge estimator of a lithium-ion battery in electric vehicles[J]. Energy, 2015, 83(1): 462-473.
[25] JIANG F B, DONG L, DAI Q W. Using wavelet packet denois-ing and ANFIS networks based on COSFLA optimization for electrical resistivity imaging inversion[J]. Fuzzy Sets and Systems, 2018, 337(1): 93-112.
[26] ZHANG X K, SUN Y, WANG Y. A novel effective and effi-cient capsule network via bottleneck residual block and automated gradual pruning[J]. Computers & Electrical Engi-neering, 2019, 80(12): 106481.
[27] LI X, YANG Y, PAN H Y. A novel deep stacking least squares support vector machine for rolling bearing fault diagnosis[J]. Computers in Industry, 2019, 110(9): 3647-3656. |