[1] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 International Conference on Neural Networks, Perth, Nov 27-Dec 1, 1995. Piscataway: IEEE, 1995: 1942-1948.
[2] WANG D F, MENG L, ZHAO W J. Improved bare bones particle swarm optimization with adaptive search center[J].Chinese Journal of Computers, 2016, 39(12): 2652-2667.王东风, 孟丽, 赵文杰. 基于自适应搜索中心的骨干粒子群算法[J]. 计算机学报, 2016, 39(12): 2652-2667.
[3] WANG L J, YIN Y L, ZHONG Y W. Cuckoo search algorithm with dimension by dimension improvement[J]. Journal of Software, 2013, 24(11): 2687-2698.王李进, 尹义龙, 钟一文. 逐维改进的布谷鸟搜索算法[J].软件学报, 2013, 24(11): 2687-2698.
[4] WANG X J, PENG H, DENG C S, et al. Firefly algorithm based on uniform local search and variable step size[J]. Journal of Computer Applications, 2018, 38(3): 715-721.王晓静, 彭虎, 邓长寿, 等. 基于均匀局部搜索和可变步长的萤火虫算法[J]. 计算机应用, 2018, 38(3): 715-721.
[5] XIE C W, ZHANG F L, LU J B, et al. Multi-objective firefly algorithm based on multiply cooperative strategies[J]. Acta Electronica Sinica, 2019, 47(11): 2359-2367.谢承旺, 张飞龙, 陆建波, 等. 一种多策略协同的多目标萤火虫算法[J]. 电子学报, 2019, 47(11): 2359-2367.
[6] YU S H, ZHU S L, MA Y, et al. A variable step size firefly algorithm for numerical optimization[J]. Applied Mathematics & Computation, 2015, 263: 214-220.
[7] ZHU G, KWONG S. Gbest- guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics & Computation, 2010, 217(7): 3166-3173.
[8] QIAN X Y, GE H W, CAI M. Decomposition and continuous mutation-based multi-objective particle swarm optimization[J]. Journal of Intelligent Systems, 2019, 14(3): 464-470.钱小宇, 葛洪伟, 蔡明. 基于目标空间分解和连续变异的多目标粒子群算法[J]. 智能系统学报, 2019, 14(3): 464-470.
[9] ROCHA H R O, SILVESTRE L J, CELESTE W C. Forecast of distributed electrical generation system capacity based on seasonal micro generators using ELM and PSO[J]. IEEE Latin America Transactions, 2018, 16(4): 1136-1141.
[10] LIU Z H, WEI H L, LI X H, et al. Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self- learning PSO[J]. IEEE Transactions on Power Electronics, 2018, 33(12): 10858-10871.
[11] LI X, WU S, LI X. Particle swarm optimization-support vector machine model for machinery fault diagnoses in high-voltage circuit breakers[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1): 6.
[12] SUN H, DENG Z C, ZHAO J, et al. Hybrid mean center opposition- based learning particle swarm optimization[J].Acta Electronica Sinica, 2019, 47(9): 1809-1818.孙辉, 邓志诚, 赵嘉, 等. 混合均值中心反向学习粒子群优化算法[J]. 电子学报, 2019, 47(9): 1809-1818.
[13] ZHANG X, WANG P, XING J C, et al. Particle swarm optimization algorithms with decreasing inertia weight based on Gaussian function[J]. Application Research of Computers,
2012, 29(10): 3710-3712.张迅, 王平, 邢建春, 等. 基于高斯函数递减惯性权重的粒子群优化算法[J]. 计算机应用研究, 2012, 29(10): 3710-3712.
[14] WANG L, WANG X F, MIAO F Y. Particle swarm optimization algorithm with two dimensional disturbance and adaptive learning factor[J]. Journal of Chinese Computer Systems,2018, 39(11): 2353-2357.王磊, 王行甫, 苗付友. 一种带有二维扰动和自适应学习因子的粒子群算法[J]. 小型微型计算机系统, 2018, 39(11): 2353-2357.
[15] LI M, CHEN H, WANG X. An improved particle swarm optimization algorithm with adaptive inertia weights[J]. International Journal of Information Technology & Decision Making, 2019, 18(3): 833-866.
[16] LIANG J J, QIN A K, SUGANTHAN P N. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295.
[17] MO S, ZENG J C, TAN Y. Particle swarm optimization based on self- organizing topology driven by fitness[C]//Proceedings of the 2010 International Conference on Computational Aspects of Social Networks, Taiyuan, Sep 26- 28, 2010.Washington: IEEE Computer Society, 2010: 23-26.
[18] KAI S X, YI Y. A new particle swarm algorithm by modifying its topology structure[C]//Proceedings of the 2015 International Conference on Machine Learning and Cybernetics,Guangzhou, Jul 12-15, 2015. Piscataway: IEEE, 2015: 88-92.
[19] LIU Q X, VAN WYK B J, SUN Y X. Small world network based dynamic topology for particle swarm optimization[C]//Proceedings of the 11th International Conference on Natural Computation, Zhangjiajie, Aug 15-17, 2015. Piscataway:IEEE, 2016: 289-294.
[20] LIANG J J, SUGANTHAN P N. Dynamic multi-swarm particle swarm optimizer[C]//Proceedings of the 2005 IEEE Swarm Intelligence Symposium, Pasadena, Jun 8-10, 2005.Piscataway: IEEE, 2005: 124-129.
[21] CHENGKHUNTOD K, KRUATRACHUE B, SIRIBOON K.A modified multi- swarm optimization with interchange GBEST and particle redistribution[C]//Proceedings of the 5th International Electrical Engineering Congress, Pattaya,Mar 8-10, 2017. Piscataway: IEEE, 2017: 1-4.
[22] DENG X L, WEI B, ZENG H, et al. A multi-population based self-adaptive migration PSO[J]. Acta Electronica Sinica, 2018,46(8): 1858-1865.邓先礼, 魏波, 曾辉, 等. 基于多种群的自适应迁移PSO算法[J]. 电子学报, 2018, 46(8): 1858-1865.
[23] KAYHAN A H, CEYLAN H, AYVAZ M T, et al. PSOLVER:a new hybrid particle swarm optimization algorithm for solving continuous optimization problems[J]. Expert Systems with Applications, 2010, 37(10): 6798-6808.
[24] XIA X W, LIU J N, GAO K F, et al. Particle swarm optimization algorithm with reverse-learning and local-learning behavior[J]. Chinese Journal of Computers, 2015, 38(7):1397-1407.夏学文, 刘经南, 高柯夫, 等. 具备反向学习和局部学习能力的粒子群算法[J]. 计算机学报, 2015, 38(7): 1397-1407.
[25] WANG F, ZHANG H, LI K, et al. A hybrid particle swarm optimization algorithm using adaptive learning strategy[J].Information Sciences, 2018, 436/437: 162-177.
[26] ZENG Y Y, FENG Y X, ZHAO W T. Adaptive mutative scale chaos particles swarm optimization based on logistic mapping[J]. Journal of System Simulation, 2017, 29(10):2241-2246.曾艳阳, 冯云霞, 赵文涛. 基于logistic 映射的自适应变尺度混沌粒子群算法[J]. 系统仿真学报, 2017, 29(10): 2241-2246.
[27] CAO L L, XU L H, GOODMAN E D. A neighbor- based learning particle swarm optimizer with short-term and longterm memory for dynamic optimization problems[J]. Information Sciences, 2018, 453: 463-485.
[28] XU L F, HUANG Z S, YANG Z Z, et al. Mixed particle swarm optimization algorithm with multistage disturbances[J]. Journal of Software, 2019, 30(6): 1835-1852.徐利锋, 黄祖胜, 杨中柱, 等. 引入多级扰动的混合型粒子群优化算法[J]. 软件学报, 2019, 30(6): 1835-1852. |