[1] WILENSKY R, CHIN D N, LURIA M, et al. The Berkeley UNIX consultant project[M]//BRAUER W, WAHLSTER W. Wissensbasierte Systeme. Berlin, Heidelberg: Springer, 1987.
[2] WALLACE R S. The Anatomy of A. L. I. C. E.[M]//EPSTEIN R, ROBERTS G, BEBER G. Parsing the Turing Test. Berlin, Heidelberg: Springer, 2009.
[3] MARIETTO M G B, DE AGUIAR R V, BARBOSA G O, et al. Artificial intelligence markup language: a brief tutorial[J]. arXiv:1307.3091, 2013.
[4] GOODRICH M A, SCHULTZ A C. Human-robot interaction: a survey[J]. Human-Computer Interaction, 2007, 1(3): 203-275.
[5] SALOVEY P, MAYER J D. Emotional intelligence[J]. Imagination, Cognition and Personality, 1990, 9(3): 185-211.
[6] PRENDINGER H, MORI J, ISHIZUKA M. Using human physiology to evaluate subtle expressivity of a virtual quizmaster in a mathematical game[J]. International Journal of Human-Computer Studies, 2005, 62(2): 231-245.
[7] CHE W X, ZHANG W N. Survey of human-machine dialogue system[J]. Artificial Intelligence VIEW, 2018(1): 76-82.
车万翔, 张伟男. 人机对话系统综述[J]. 人工智能, 2018(1): 76-82.
[8] CHEN C, ZHU Q Q, YAN R, et al. Survey on deep learning based open domain dialogue system[J]. Chinese Journal of Computers, 2019, 42(7): 1439-1466.
陈晨, 朱晴晴, 严睿, 等. 基于深度学习的开放领域对话系统研究综述[J]. 计算机学报, 2019, 42(7): 1439-1466.
[9] PAMUNGKAS E W. Emotionally-aware chatbots: a survey[J]. arXiv:1906.09774, 2019.
[10] MARSELLA S, GRATCH J. Computationally modeling human emotion[J]. Communications of the ACM, 2014, 57(12): 56-67.
[11] CHEN J P, MA J H, WANG Y J. A survey of human-computer dialogue system based on multiple-round interaction[J]. Journal of Nanjing University of Information Science & Technology, 2019, 11(3): 256-268.
陈健鹏, 马建辉, 王怡君. 基于多轮交互的人机对话系统综述[J]. 南京信息工程大学学报, 2019, 11(3): 256-268.
[12] BORDES A, BOUREAU Y L, WESTON J. Learning end-to-end goal-oriented dialog[J]. arXiv:1605.07683, 2017.
[13] ZHOU H, HUANG M, ZHANG T, et al. Emotional chatting machine: emotional conversation generation with internal and external memory[C]//Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 730-738.
[14] PORIA S, CAMBRIA E, HAZARIKA D, et al. Context-dependent sentiment analysis in user-generated videos[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 31-Aug 4, 2017. Stroudsburg: ACL, 2017: 873-883.
[15] CHEN S Y, HSU C C, KUO C C, et al. Emotionlines: an emotion corpus of multi-party conversations[J]. arXiv:1802. 08379, 2018.
[16] CERISARA C, JAFARITAZEHJANI S, OLUOKUN A, et al. Multi-task dialog act and sentiment recognition on Mastodon[C]//Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, Aug 20-26, 2018. Stroudsburg: ACL, 2018: 745-754.
[17] WANG J C, XU Y, LIU Q Y, et al. Dialog sentiment analysis with neural topic model[J]. Journal of Chinese Information Processing, 2020, 34(1): 106-112.
王建成, 徐扬, 刘启元, 等. 基于神经主题模型的对话情感分析[J]. 中文信息学报, 2020, 34(1): 106-112.
[18] HAZARIKA D, PORIA S, ZADEH A, et al. Conversational memory network for emotion recognition in dyadic dialogue videos[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 2122-2132.
[19] HAZARIKA D, PORIA S, MIHALCEA R, et al. ICON: interactive conversational memory network for multimodal emotion detection[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 2594-2604.
[20] MAJUMDER N, PORIA S, HAZARIKA D, et al. Dialogue-RNN: an attentive RNN for emotion detection in conversations[C]//Proceedings of the AAAI Conference on Artificial Intelligence, Hilton Hawaiian Village, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 6818-6825.
[21] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[22] ZHANG D, WU L, SUN C, et al. Modeling both context-and speaker-sensitive dependence for emotion detection in multi-speaker conversations[C]//Proceedings of the 2019 International Joint Conference on Artificial Intelligence, Macao, China, Jul 13-19, 2019. San Mateo: Morgan Kaufmann, 2019: 5415-5421.
[23] GHOSAL D, MAJUMDER N, PORIA S, et al. DialogueGCN: a graph convolutional neural network for emotion recognition in conversation[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 154-164.
[24] WEIZENBAUM J. ELIZA—a computer program for the study of natural language communication between man and machine[J]. Communications of the ACM, 1966, 9(1): 36-45.
[25] COLBY K M. Modeling a paranoid mind[J]. Behavioral and Brain Sciences, 1981, 4(4): 515-534.
[26] KESHTKAR F, INKPEN D. A pattern-based model for generating text to express emotion[C]//LNCS 6975: Proceedings of the 2011 International Conference on Affective Computing and Intelligent Interaction, Memphis, Oct 9-12, 2011. Berlin, Heidelberg: Springer, 2011: 11-21.
[27] SKOWRON M. Affect listeners: acquisition of affective states by means of conversational systems[C]//LNCS 5967: Development of Multimodal Interfaces: Active Listening and Synchrony, Dublin, Mar 23-27, 2009. Berlin, Heidelberg: Springer, 2010: 169-181.
[28] HE Y S, LI L. The application of “emotional guidance” in physical education[J]. China School Physical Education, 2004(3): 12-13.
郝延省, 李丽. “情绪辅导”在体育教学中的运用[J]. 中国学校体育, 2004(3): 12-13.
[29] SHEN L, FENG Y. CDL: curriculum dual learning for emotion-controllable response generation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 556-566.
[30] HUANG C, ZAIANE O R, TRABELSI A, et al. Automatic dialogue generation with expressed emotions[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 49-54.
[31] XIE Y, SVIKHNUSHINA E, PU P. A multi-turn emotionally engaging dialog model[J]. arXiv:1908.07816, 2019.
[32] SONG Z, ZHENG X, LIU L, et al. Generating responses with a specific emotion in dialog[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 3685-3695.
[33] MA Z, YANG R, DU B, et al. A control unit for emotional conversation generation[J]. IEEE Access, 2020, 8: 43168-43176.
[34] LUBIS N, SAKTI S, YOSHINO K, et al. Eliciting positive emotion through affect-sensitive dialogue response generation: a neural network approach[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5293-5300.
[35] COLOMBO P, WITON W, MODI A, et al. Affect-driven dialog generation[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 3734-3743.
[36] MOHAMMAD S. Obtaining reliable human ratings of valence, arousal, and dominance for 20, 000 English words[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 174-184.
[37] ZHOU X D, WANG W Y. MojiTalk: generating emotional responses at scale[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 1128-1137.
[38] YANG F R, HUO N, ZHANG X H, et al. Topic-expanded emotional conversation generation with attention mechanism[J/OL]. Journal of Computer Applications[2021-01-29]. http://kns.cnki.net/kcms/detail/51.1307.TP.20201011.1715.014.html.
杨丰瑞, 霍娜, 张许红, 等. 基于注意力机制的主题扩展情感对话生成[J/OL]. 计算机应用[2021-01-29]. http://kns.cnki.net/kcms/detail/51.1307.TP.20201011.1715.014.html.
[39] SUN X, LI J, WEI X. Emotional editing constraint conversation generation based on reinforcement learning[J]. Acta Automatica Sinica[2021-01-29]. https://doi.org/10.16383/j.aas.c190058.
孙晓, 李佳, 卫星. 基于强化学习的情感编辑约束对话内容生成[J]. 自动化学报[2021-01-29]. https://doi.org/10.16383/ j.aas.c190058.
[40] PENG Y, FANG Y, XIE Z, et al. Topic-enhanced emotional conversation generation with attention mechanism[J]. Knowledge-Based Systems, 2019, 163: 429-437.
[41] ASGHAR N, POUPART P, HOEY J, et al. Affective neural response generation[C]//LNCS 10772: Proceedings of the 40th European Conference on IR Research on Advances in Information Retrieval, Grenoble, Mar 26-29, 2018. Berlin, Heidelberg: Springer, 2018: 154-166.
[42] SHI W Y, YU Z. Sentiment adaptive end-to-end dialog systems[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 1509-1519.
[43] LIANG Y, MENG F, ZHANG Y, et al. Infusing multi-source knowledge with heterogeneous graph neural network for emotional conversation generation[J]. arXiv:2012.04882, 2020.
[44] ZHANG C X, SONG D J, HUANG C, et al. Heterogeneous graph neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 793-803.
[45] SHANTALA R, KYSELOV G, KYSELOVA A. Neural dialogue system with emotion embeddings[C]//Proceedings of the 2018 IEEE 1st International Conference on System Analysis & Intelligent Computing, Ukraine, Oct 8-12, 2018. Piscataway: IEEE, 2018: 1-4.
[46] GHOSH S, CHOLLET M, LAKSANA E, et al. Affect-LM: a neural language model for customizable affective text generation[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 634-642.
[47] BUSSO C, BULUT M, LEE C C, et al. IEMOCAP: interactive emotional dyadic motion capture database[J]. Language Resources and Evaluation, 2008, 42(4): 335-359.
[48] MCKEOWN G, VALSTAR M, COWIE R, et al. The semaine database: annotated multimodal records of emotionally colored conversations between a person and a limited agent[J]. IEEE Transactions on Affective Computing, 2011, 3(1): 5-17.
[49] PORIA S, HAZARIKA D, MAJUMDER N, et al. MELD: a multimodal multi-party dataset for emotion recognition in conversations[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 527-536.
[50] LI Y R, SU H, SHEN X Y, et al. DailyDialog: a manually labelled multi-turn dialogue dataset[C]//Proceedings of the 8th International Joint Conference on Natural Language Processing, Taipei, China, Nov 27-Dec 1, 2017. Asian Federation of Natural Language Processing, 2017: 986-995.
[51] CHATTERJEE A, GUPTA U, CHINNAKOTLA M K, et al. Understanding emotions in text using deep learning and big data[J]. Computers in Human Behavior, 2019, 93: 309-317.
[52] SHANG L F, LU Z D, LI H. Neural responding machine for short-text conversation[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 1577-1586.
[53] DANESCU-NICULESCU-MIZIL C, LEE L. Chameleons in imagined conversations: a new approach to understanding coordination of linguistic style in dialogs[C]//Proceedings of the 2nd Workshop on Cognitive Modeling and Computational Linguistics, Portland, Jun 23, 2011. Stroudsburg: ACL, 2011: 76-87.
[54] TIEDEMANN J. News from OPUS—a collection of multilingual parallel corpora with tools and interfaces[C]//Proceedings of the Advances in Natural Language Processing, Bulgaria, Sep 14-16, 2009. Stroudsburg: ACL, 2009: 237-248.
[55] HUANG C Y, KU L W. Emotionpush: emotion and response time prediction towards human-like chatbots[C]//Proceedings of the 2018 IEEE Global Communications Conference, Abu Dhabi, Dec 9-13, 2018. Piscataway: IEEE, 2018: 206-212.
[56] FIRDAUS M, CHAUHAN H, EKBAL A, et al. EmoSen: generating sentiment and emotion controlled responses in a multimodal dialogue system[J]. IEEE Transactions on Affective Computing, 2020, 14(8): 1-12.
[57] SHAO Y L, GOUWS S, BRITZ D, et al. Generating high-quality and informative conversation responses with sequence-to-sequence models[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Sep 9-11, 2017. Stroudsburg: ACL, 2017: 2210-2219.
[58] BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. Journal of Machine Learning Research, 2003, 3(2): 1137-1155.
[59] PAPINENI K, ROUKOS S, WARD T, et al. BLEU: a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, Jul 7-12, 2002. Stroudsburg: ACL, 2002: 311-318.
[60] LI J, GALLEY M, BROCKETT C, et al. A diversity-promoting objective function for neural conversation models[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, California, Jun 12-17, 2016. Stroudsburg: ACL, 2016: 110-119.
[61] VINYALS O, LE Q. A neural conversational model[J]. arXiv:1506.05869, 2015.
[62] LIU C W, LOWE R, SERBAN I V, et al. How NOT to evaluate your dialogue system: an empirical study of unsupervised evaluation metrics for dialogue response generation[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 2122-2132. |