[1] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 770-778.
[2] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Piscataway: IEEE, 2017: 2261-2269.
[3] DENG J K, GUO J, XUE N N, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4690-4699.
[4] BIEDERMAN I. Recognition-by-components: a theory of human image understanding[J]. Psychological Review, 1987, 94(2): 115-147.
[5] XIAN Y, LAMPERT C H, SCHIELE B, et al. Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(9): 2251-2265.
[6] LAROCHELLE H, ERHAN D, BENGIO A Y. Zero-data learning of new tasks[C]//Proceedings of the 23rd National Conference on Artificial Intelligence, Jul 13-17, 2008. Menlo Park: AAAI, 2008: 646-651.
[7] PALATUCCI M, POMERLEAU D, HINTON G E, et al. Zero-shot learning with semantic output codes[C]//Proceedings of the 22nd International Conference on Neural Information Processing Systems, Vancouver, Dec 7-10, 2009. Red Hook: Curran Associates, 2009: 1410-1418.
[8] LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-25, 2009. Piscataway: IEEE, 2009: 951-958.
[9] CHAO W L, CHANGPINYO S, GONG B Q, et al. An empirical study and analysis of generalized zero-shot learning for object recognition in the wild[C]//LNCS 9906: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Berlin, Heidelberg: Springer, 2016: 52-68.
[10] JI Z, WANG H R, YU Y L, et al. A decadal survey of zero-shot image classification[J]. Science in China (Information Sciences), 2019, 49(10): 1299-1320.
冀中, 汪浩然, 于云龙, 等. 零样本图像分类综述: 十年进展[J]. 中国科学: 信息科学, 2019, 49(10): 1299-1320.
[11] FU Y W, HOSPEDALES T M, XIANG T, et al. Attribute learning for understanding unstructured social activity[C]//LNCS 7575: Proceedings of 12th European Conference on Computer Vision, Florence, Nov 7-13, 2012. Berlin, Heidelberg: Springer, 2012: 530-543.
[12] AKATA Z, PERRONNIN F, HARCHAOUI Z, et al. Label-embedding for attribute-based classification[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, Jun 23-28, 2013. Piscataway: IEEE, 2013: 819-826.
[13] FROME A, CORRADO G S, SHLENS J, et al. Devise: a deep visual-semantic embedding model[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 2121-2129.
[14] SOCHER R, GANJOO M, MANNING C D, et al. Zero-shot learning through cross-modal transfer[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 935-943.
[15] XIE G S, LIU L, ZHU F, et al. Region graph embedding network for zero-shot learning[C]//LNCS 12349: Proceedings of the European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Berlin, Heidelberg: Springer, 2020: 562-580.
[16] HUYNH D, ELHAMIFAR E. A shared multi-attention framework for multi-label zero-shot learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 8776-8786.
[17] SONG X H, ZENG H T, ZHANG S X, et al. Generalized zero-shot learning with multi-source semantic embeddings for scene recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia, Virtual Event, Seattle, Oct 12-16, 2020. New York: ACM, 2020: 3976-3985.
[18] WANG X L, YE Y F, GUPTA A. Zero-shot recognition via semantic embeddings and knowledge graphs[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 6857-6866.
[19] KAMPFFMEYER M, CHEN Y B, LIANG X D, et al. Rethinking knowledge graph propagation for zero-shot learning [C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 11487-11496.
[20] LIU L, ZHOU T Y, LONG G D, et al. Attribute propagation network for graph zero-shot learning[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 4868-4875.
[21] ZHANG L, XIANG T, GONG S G. Learning a deep embedding model for zero-shot learning[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21, 2017. Piscataway: IEEE, 2017: 3010-3019.
[22] SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 21-26, 2017. Piscataway: IEEE, 2017: 1199-1208.
[23] LI Y, ZHANG J, ZHANG J, et al. Discriminative learning of latent features for zero-shot recognition[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 7463-7471.
[24] XIE G S, LIU L, JIN X B, et al. Attentive region embedding network for zero-shot learning[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 9384-9393.
[25] LI X, FANG M, LI H K, et al. Zero shot learning based on class visual prototypes and semantic consistency[J]. Pattern Recognition Letters, 2020, 135: 368-374.
[26] WAN Z Y, LI Y, YANG M, et al. Transductive zero-shot learning via visual center adaptation[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 10059-10060.
[27] DEMIREL B, CINBIS R G, IKIZLER-CINBIS N. Learning visually consistent label embeddings for zero-shot learning[C]//Proceedings of the 2019 IEEE International Conference on Image Processing, Taiwan, China, Sep 22-25, 2019. Piscataway: IEEE, 2019: 3656-3660.
[28] HUYNH D, ELHAMIFAR E. Fine-grained generalized zero-shot learning via dense attribute-based attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 4483-4493.
[29] REED S, AKATA Z, LEE H, et al. Learning deep representations of fine-grained visual descriptions[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 49-58.
[30] WANG X S, PANG S M, ZHU J H, et al. Visual space optimization for zero-shot learning[J]. arXiv:1907.00330, 2019.
[31] MIN S, YAO H, XIE H, et al. Domain-specific embedding network for zero-shot recognition[C]//Proceedings of the 27th ACM International Conference on Multimedia, Nice, Oct 21-25, 2019. New York: ACM, 2019: 2070-2078.
[32] LIU Y, GAO X B, GAO Q X, et al. Label-activating framework for zero-shot learning[J]. Neural Networks, 2020, 121: 1-9.
[33] ZHANG L, WANG P, LIU L Q, et al. Towards effective deep embedding for zero-shot learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(9): 2843-2852.
[34] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 2672-2680.
[35] XIAN Y Q, LORENZ T, SCHIELE B, et al. Feature gene-rating networks for zero-shot learning[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 5542-5551.
[36] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[J]. arXiv:1701.07875, 2017.
[37] SARIYILDIZ M B, CINBIS R G. Gradient matching gene-rative networks for zero-shot learning[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 2168-2178.
[38] VERMA V K, BRAHMA D, RAI P. Meta-learning for generalized zero-shot learning[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 6062-6069.
[39] MA Y B, XU X, SHEN F M, et al. Similarity preserving feature generating networks for zero-shot learning[J]. Neurocomputing, 2020, 406: 333-342.
[40] LIU H, YAO L, ZHENG Q, et al. Dual-stream generative adversarial networks for distributionally robust zero-shot learning[J]. Information Sciences, 2020, 519: 407-422.
[41] FELIX R, KUMAR V B G, REID I, et al. Multi-modal cycle-consistent generalized zero-shot learning[C]//LNCS 11210: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 21-37.
[42] LI J J, JING M M, LU K, et al. Alleviating feature confusion for generative zero-shot learning[C]//Proceedings of the 27th ACM International Conference on Multimedia, Nice, Oct 21-25, 2019. New York: ACM, 2019: 1587-1595.
[43] CHE T, LI Y R, JACOB A P, et al. Mode regularized generative adversarial networks[J]. arXiv:1612.02136, 2016.
[44] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013.
[45] MISHRA A, KRISHNA REDDY S, MITTAL A, et al. A generative model for zero shot learning using conditional variational autoencoders[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 2188-2196.
[46] SCHONFELD E, EBRAHIMI S, SINHA S, et al. Generalized zero-and few-shot learning via aligned variational autoencoders[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 8247-8255.
[47] GAO R, HOU X S, QIN J, et al. Zero-VAE-GAN: generating unseen features for generalized and transductive zero-shot learning[J]. IEEE Transactions on Image Processing, 2020, 29: 3665-3680.
[48] ZHANG Z L, LI Y J, YANG J, et al. Cross-layer autoencoder for zero-shot learning[J]. IEEE Access, 2019, 7: 167584-167592.
[49] YU H, LEE B. Zero-shot learning via simultaneous generating and learning[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Dec 8-14, 2019. Red Hook: Curran Associates, 2019: 46-56.
[50] XIAN Y Q, SHARMA S, SCHIELE B, et al. F-VAEGAN-D2: a feature generating framework for any-shot learning[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 10275-10284.
[51] ARDIZZONE L, KRUSE J, WIRKERT S, et al. Analyzing inverse problems with invertible neural networks[J]. arXiv: 1808.04730, 2018.
[52] SHEN Y M, QIN J, HUANG L. Invertible zero-shot recognition flows[J]. arXiv:2007.04873, 2020.
[53] GU Y C, ZHANG L, LIU Y, et al. Generalized zero-shot learning via VAE-conditioned generative flow[J]. arXiv:2009. 00303, 2020.
[54] WAH C, BRANSON S, PERONA P, et al. Multiclass recognition and part localization with humans in the loop[C]//Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Nov 6-13, 2011. Piscataway: IEEE, 2011: 2524-2531.
[55] PATTERSON G, XU C, SU H, et al. The sun attribute database: beyond categories for deeper scene understanding[J]. International Journal of Computer Vision, 2014, 108(1/2): 59-81.
[56] XIAO J X, HAYS J, EHINGER K A, et al. Sun database: large-scale scene recognition from abbey to zoo[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, Jun 13-18, 2010. Washington: IEEE Computer Society, 2010: 3485-3492.
[57] FARHADI A, ENDRES I, HOIEM D, et al. Describing objects by their attributes[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-25, 2009. Piscataway: IEEE, 2009: 1778-1785.
[58] ZHANG Z M, SALIGRAMA V. Zero-shot learning via semantic similarity embedding[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Piscataway: IEEE, 2015: 4166-4174.
[59] ROMERA-PAREDES B, TORR P H S. An embarrassingly simple approach to zero-shot learning[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015. New York: ACM, 2015: 2152-2161.
[60] KODIROV E, XIANG T, GONG S G. Semantic autoencoder for zero-shot learning[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Piscataway: IEEE, 2017: 3174-3183.
[61] AKATA Z, PERRONNIN F, HARCHAOUI Z, et al. Label-embedding for image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(7): 1425-1438.
[62] LI J J, JING M M, LU K, et al. Leveraging the invariant side of generative zero-shot learning[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 7402-7411.
[63] TONG B, WANG C, KLINKIGT M, et al. Hierarchical disentanglement of discriminative latent features for zero-shot learning[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 11467-11476.
[64] ZHU Y Z, XIE J W, LIU B C, et al. Learning feature-to- feature translator by alternating back-propagation for generative zero-shot learning[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, Oct 27 -Nov 2, 2019. Piscataway: IEEE, 2019: 9843-9853.
[65] YU Y L, JI Z, HAN J G, et al. Episode-based prototype generating network for zero-shot learning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 14032-14041. |