[1] WANG S Q, MURTAZA Z, KIN K L. Online placement of multi-component applications in edge computing environments[J]. IEEE Access, 2017(5): 2514-2533.
[2] MAO Y Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: the communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322-2358.
[3] YU W, LIANG F, HE X F, et al. A survey on the edge com-puting for the Internet of things[J]. IEEE Access, 2018(6): 6900-6919.
[4] 4G Americas. 4G Americas?? recommendations on 5G requi-rements and solutions white paper[EB/OL]. (2014-10-23). http://www.4gamericas.org.
[5] TUYEN X T, DARIO P. Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 856-868.
[6] MIAO Y M, WU G X, LI M, et al. Intelligent task prediction and computation offloading based on mobile-edge cloud com-puting[J]. Future Generation Computer Systems, 2019, 102: 925-931.
[7] CHEN M, HAO Y X. Task offloading for mobile edge com-puting in software defined ultra-dense network[J]. IEEE Jour-nal on Selected Areas in Communications, 2018, 36(3): 587-597.
[8] ZHANG J, XIA W W, YAN F, et al. Joint computation off-loading and resource allocation optimization in heterogeneous networks with mobile edge computing[J]. IEEE Access, 2018(6): 19324-19337.
[9] CHEN Y, ZHANG N, ZHANG Y C, et al. Energy efficient dynamic offloading in mobile edge computing for Internet of things[J]. IEEE Transactions on Cloud Computing, 2019: 1.
[10] HAO Y X, CHEN M, HU L, et al. Energy efficient task caching and offloading for mobile edge computing[J]. IEEE Access, 2018(6): 11365-11373.
[11] ZHAO H T, DING Y, ZHANG M K, et al. Multipath trans-mission workload balancing optimization scheme based on mobile edge computing in vehicular heterogeneous network[J]. IEEE Access, 2019(7): 116047-116055.
[12] DAI H J, ZENG X Y, YU Z L, et al. A scheduling algorithm for autonomous driving tasks on mobile edge computing servers[J]. Journal of Systems Architecture, 2019, 94: 14-23.
[13] WU Y L, WU J G, CHEN L, et al. Efficient task scheduling for servers with dynamic states in vehicular edge computing[J]. Computer Communications, 2019, 150: 245-253.
[14] ZHANG H B, LI H, CHEN S X, et al. Computing offloading and resource optimization in ultra-dense networks with mobile edge computation[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1194-1201.
张海波, 李虎, 陈善学, 等. 超密集网络中基于移动边缘计算的任务卸载和资源优化[J]. 电子与信息学报, 2019, 41(5): 1194-1201.
[15] LYU X C, TIAN H, NI W, et al. Energy-efficient admission of delay-sensitive tasks for mobile edge computing[J]. IEEE Transactions on Communications, 2018, 66(6): 2603-2616.
[16] HUANG X G, CUI Y F, ZHANG D Y, et al. Joint optimiza-tion scheme of task offloading and resource allocation based on MEC[J]. Systems Engineering and Electronics, 2020, 42(6): 1386-1394.
黄晓舸, 崔艺凡, 张东宇,等. 基于MEC的卸载任务和计算资源分配联合优化方案[J]. 系统工程与电子技术, 2020, 42(6): 1386-1394.
[17] WANG C, DONG C W, QIN J H, et al. Energy-efficient off-loading policy for resource allocation in distributed mobile edge computing[C]//Proceedings of the 2018 IEEE Sympo-sium on Computer and Communications, Natal, Jun 25-28, 2018. Piscataway: IEEE, 2018: 366-372. |