[1] |
GANTER B, WILLE R. Formal concept analysis: mathe-matical foundations[M]. Berlin, Heidelberg: Springer, 1999.
|
[2] |
WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[C]// LNCS 5548: Proceedings of the 7th International Conference on Formal Concept Analysis, Darmstadt, May 21-24, 2009. Berlin, Heidelberg: Springer, 2009: 314-339.
|
[3] |
李金海, 魏玲, 张卓, 等. 概念格理论与方法及其研究展望[J]. 模式识别与人工智能, 2020, 33(7): 619-642.
DOI
|
|
LI J H, WEI L, ZHANG Z, et al. Concept lattice theory and method and their research prospect[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(7): 619-642.
DOI
|
[4] |
TU X D, WANG Y L, ZHANG M L, et al. Using formal concept analysis to identify negative correlations in gene expression data[J]. IEEE/ACM Transactions on Computa-tional Biology and Bioinformatics, 2016, 13(2): 380-391.
|
[5] |
ZOU C F, ZHANG D Q, WAN J F, et al. Using concept lattice for personalized recommendation system design[J]. IEEE Systems Journal, 2017, 11(1): 305-314.
DOI
URL
|
[6] |
QIN K Y, LI B, PEI Z. Attribute reduction and rule acqui-sition of formal decision context based on object (property) oriented concept lattices[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(10): 2837-2850.
DOI
URL
|
[7] |
CORNEJO M E, MEDINA J, RAMÍREZ-POUSSA E. Attri-bute and size reduction mechanisms in multi-adjoint concept lattices[J]. Journal of Computational and Applied Mathem-atics, 2017, 318: 388-402.
|
[8] |
REN R S, WEI L. The attribute reductions of three-way con-cept lattices[J]. Knowledge Based Systems, 2016, 99: 92-102.
DOI
URL
|
[9] |
ZHAI Y H, LI D Y. Knowledge structure preserving fuzzy attribute reduction in fuzzy formal context[J]. International Journal of Approximate Reasoning, 2019, 115: 209-220.
DOI
URL
|
[10] |
LI J H, KUMAR C A, MEI C L, et al. Comparison of reduction in formal decision contexts[J]. International Journal of Approximate Reasoning, 2017, 80: 100-122.
DOI
URL
|
[11] |
SHAO M W, LI K W. Attribute reduction in generalized one-sided formal contexts[J]. Information Sciences, 2016, 378: 317-327.
DOI
URL
|
[12] |
LI J H, MEI C L, XU W H, et al. Concept learning via granular computing: a cognitive viewpoint[J]. Information Sciences, 2015, 298: 447-467.
DOI
PMID
|
[13] |
SHI Y, MI Y L, LI J H, et al. Concept-cognitive learning model for incremental concept learning[J]. IEEE Transac-tions on Systems, Man, and Cybernetics: Systems, 2021, 51(2): 809-821.
|
[14] |
李金海, 米允龙, 刘文奇. 概念的渐进式认知理论与方法[J]. 计算机学报, 2019, 42(10): 2233-2250.
|
|
LI J H, MI Y L, LIU W Q. Incremental cognition of concepts: theories and methods[J]. Chinese Journal of Com-puters, 2019, 42(10): 2233-2250.
|
[15] |
LI J H, HUANG C C, QI J J, et al. Three-way cognitive concept learning via multi-granularity[J]. Information Scie-nces, 2017, 378: 244-263.
|
[16] |
QU K S, ZHAI Y H, LIANG J Y. Study of decision implications based on formal concept analysis[J]. Internat-ional Journal of General Systems, 2007, 36(2): 147-156.
|
[17] |
ZHAI Y H, LI D Y, QU K S. Decision implications: a logical point of view[J]. International Journal of Machine Learning and Cybernetics, 2014, 5(4): 509-516.
DOI
URL
|
[18] |
贾楠, 张少霞, 翟岩慧, 等. 决策蕴涵上的推理规则和推理过程研究[J]. 计算机科学与探索, 2020, 14(2): 344-352.
DOI
|
|
JIA N, ZHANG S X, ZHAI Y H, et al. Study of inference rules and deduction process on decision implications[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(2): 344-352.
DOI
|
[19] |
ZAKI M J, OGIHARA M. Theoretical foundations of association rules[C]// Proceedings of the 3rd ACM SIGMOD Workshop on Research Issues in Data Mining and Know-ledge Discovery, Seattle, Jun 13, 1998. New York:ACM, 1998: 71-78.
|
[20] |
ZAKI M J. Mining non-redundant association rules[J]. Data Mining and Knowledge Discovery, 2004, 9(3): 223-248.
DOI
URL
|
[21] |
BALCÁZAR J L. Minimum-size bases of association rules[C]// LNCS 5211: Proceedings of the 2008 European Confe-rence on Machine Learning and Knowledge Discovery in Databases, Belgium, Sep 15-19, 2008. Berlin, Heidelberg: Springer, 2008: 86-101.
|
[22] |
ZHAI Y H, LI D Y, ZHANG J. Variable decision know-ledge representation: a logical description[J]. Journal of Computational Science, 2018, 25: 161-169.
DOI
URL
|
[23] |
ZHANG S X, LI D Y, ZHAI Y H, et al. A comparative study of decision implication, concept rule and granular rule[J]. Information Sciences, 2020, 508: 33-49.
DOI
URL
|
[24] |
ZHAI Y H, LI D Y, QU K S. Fuzzy decision implications[J]. Knowledge-Based Systems, 2013, 37: 230-236.
DOI
URL
|
[25] |
ZHAI Y H, LI D Y, QU K S. Fuzzy decision implication canonical basis[J]. International Journal of Machine Learn-ing and Cybernetics, 2018, 9(11): 1909-1917.
|