[1] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[C]//LNCS 5548: Proceedings of the 2009 International Conference on Formal Concept Analysis, Darmstadt, May 21-24, 2009. Berlin, Heidelberg: Springer, 2009: 314-339.
[2] QI J J, QIAN T, WEI L. The connections between three-way and classical concept lattices[J]. Knowledge-based Systems, 2016, 91: 143-151.
[3] XU W H, PANG J Z, LUO S Q. A novel cognitive system model and approach to transformation of information granules[J]. International Journal of Approximate Reasoning, 2014, 55(3): 853-866.
[4] XU W H, LI W T. Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets[J]. IEEE Transactions on Cybernetics, 2016, 46(2): 366-379.
[5] LI J H, HUANG C C, QI J J, et al. Three-way cognitive concept learning via multi-granularity[J]. Information Sciences, 2017, 378: 244-263.
[6] ZHI H L, LI J H. Granule description based on formal concept analysis[J]. Knowledge-Based Systems, 2016, 104: 62-73.
[7] LI J H, MEI C L, XU W H, et al. Concept learning via granular computing: a cognitive viewpoint[J]. Information Sciences, 2015, 298: 447-467.
[8] ISHIGURE H, MUTOH A, MATSUI T, et al. Concept lattice reduction using attribute inference[C]//Proceedings of the IEEE 4th Global Conference on Consumer Electronics, Osaka, Oct 27-30, 2015. Piscataway: IEEE, 2015: 108-111.
[9] KUMAR C A, DIAS S M, VIEIRA N J. Knowledge reduction in formal contexts using non-negative matrix factorization[J]. Mathematics and Computers in Simulation, 2015, 109: 46-63.
[10] SHAO M W, LEUNG Y, WU W Z. Rule acquisition and complexity reduction in formal decision contexts[J]. International Journal of Approximate Reasoning, 2014, 55(1): 259-274.
[11] WEI L, QI J J, ZHANG W X. Attribute reduction theory of concept lattice based on decision formal contexts[J]. Science in China: Series E Information Sciences, 2008, 38(2): 195-208.
魏玲, 祁建军, 张文修. 决策形式背景的概念格属性约简[J]. 中国科学: E辑 信息科学, 2008, 38(2): 195-208.
[12] LI J H, KUMAR C A, MEI C L, et al. Comparison of reduction in formal decision contexts[J]. International Journal of Approximate Reasoning, 2017, 80: 100-122.
[13] ZHANG W X, WEI L, QI J J. Attribute reduction theory and approach to concept lattice[J]. Science in China: Series E Information Sciences, 2005, 35(6): 628-639.
张文修, 魏玲, 祁建军. 概念格的属性约简理论与方法[J]. 中国科学: E辑 信息科学, 2005, 35(6): 628-639.
[14] WU W Z, LEUNG Y, MI J S. Granular computing and knowledge reduction in formal contexts[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21: 1461-1474.
[15] MA Y, ZHANG X D, CHI C Y. Compact dependencies and intent waned values[J]. Journal of Software, 2011, 22(5): 962-972.
马垣, 张学东, 迟呈英. 紧致依赖与内涵亏值[J]. 软件学报, 2011, 22(5): 962-972.
[16] GANTER B, WILLE R. Formal concept analysis: mathematical foundations[M]. Berlin, Heidelberg: Springer, 1999.
[17] ZHAI Y H, LI D Y, QU K S. Fuzzy decision implications[J]. Knowledge-Based Systems, 2013, 37: 230-236.
[18] ZHAI Y H, LI D Y, QU K S. Fuzzy decision implication canonical basis[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(11): 1909-1917.
[19] QU K S, ZHAI Y H, LIANG J Y, et al. Study of decision implications based on formal concept analysis[J]. International Journal of General Systems, 2007, 36(2): 147-156.
[20] ZHANG S X, LI D Y, ZHAI Y H, et al. A comparative study of decision implication, concept rule and granular rule[J]. Information Sciences, 2020, 508: 33-49.
[21] DUQUENNE V, GUIGUES J L. Famille minimale d’implications informatives résultant d??un tableau de données binaires[J]. Mathématiques et Sciences Humaines, 1986, 24(95): 5-18.
[22] QU K S, ZHAI Y H. Generating complete set of implications for formal contexts[J]. Knowledge-Based Systems, 2008, 21: 429-433.
[23] ZHAI Y H, LI D Y, QU K S. Decision implications: a logical point of view[J]. International Journal of Machine Learning and Cybernetics, 2014, 5(4): 509-516.
[24] STUMME G, TAOUIL R, BASTIDE Y, et al. Fast computation of concept lattices using data mining techniques[C]//Proceedings of the 7th International Workshop on Knowledge Representation Meets Databases, Berlin, Aug 21, 2000: 129-139.
[25] LI D Y, ZHANG S X, ZHAI Y H. Method for generating decision implication canonical basis based on true premises[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(1): 57-67.
[26] JIA N, ZHANG S X, ZHAI Y H, et al. Study of inference rules and deduction process on decision implications[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(2): 344-352.
贾楠, 张少霞, 翟岩慧, 等. 决策蕴涵上的推理规则和推理过程研究[J]. 计算机科学与探索, 2020, 14(2): 344-352.
[27] ZHAI Y H, LI D Y, QU K S. Canonical basis for decision implication[J]. Acta Electronica Sinica, 2015, 43(1): 18-23.
翟岩慧, 李德玉, 曲开社. 决策蕴涵规范基[J]. 电子学报, 2015, 43(1): 18-23.
[28] ZHAI Y H, LI D Y, QU K S. Decision implication canonical basis: a logical perspective[J]. Journal of Computer and System Sciences, 2015, 81(1): 208-218.
[29] MAIER D. The theory of relational data bases[M]. Rockville: Computer Science Press, 1983.
[30] ZHAI Y H, LI D Y. Knowledge structure preserving fuzzy attribute reduction in fuzzy formal context[J]. International Journal of Approximate Reasoning, 2019, 115: 209-220.
[31] ZHAI Y H, LI D Y, ZHANG J. Variable decision know-ledge representation: a logical description[J]. Journal of Computational Science, 2018, 25: 161-169. |