[1] FU Z Y, FENG P, ANGELINI F, et al. Particle PHD filter based multiple human tracking using online group-structured dictionary learning[J]. IEEE Access, 2018(6): 14764-14778.
[2] KUTSCHBACH T, BOCHINSKI E, EISELEIN V, et al. Se-quential sensor fusion combining probability hypothesis den-sity and kernelized correlation filters for multi-object trac-king in video data[C]//Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance, Lecce, Aug 29-Sep 1, 2017. Washington: IEEE Computer Society, 2017: 1-5.
[3] FU Z Y, ANGELINI F, CHAMBERS J, et al. Multi-level co-operative fusion of GM-PHD filters for online multiple hu-man tracking[J]. IEEE Transactions on Multimedia, 2019, 21(9): 2277-2291.
[4] HENSCHEL R, LEAL-TAIXé L, CREMERS D, et al. Fusion of head and full-body detectors for multi-object tracking[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 1428-1437.
[5] FU Z Y, NAQVI S M, CHAMBERS J A. Collaborative de-tector fusion of data-driven PHD filter for online multiple human tracking[C]//Proceedings of the 21st International Conference on Information Fusion, Cambridge, Jul 10-13, 2018. Piscataway: IEEE, 2018: 1976-1981.
[6] FU Z Y, ANGELINI F, NAQVI S M, et al. GM-PHD filter based online multiple human tracking using deep discrimina-tive correlation matching[C]//Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Apr 15-20, 2018. Piscataway: IEEE, 2018: 4299-4303.
[7] YANG J L, TANG Y, ZHANG G N. Visual multi-object track-ing using convolution feature and multi-Bernoulli filter[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(11): 1945-1957.
杨金龙, 汤玉, 张光南. 卷积特征多伯努利视频多目标跟踪算法[J]. 计算机科学与探索, 2019, 13(11): 1945-1957.
[8] YANG J L, CHENG X X, MIAO J N, et al. Detection opti-mized multi-Bernoulli algorithm for visual multi-target track-ing[J]. Journal of Frontiers of Computer Science and Tech-nology, 2020, 14(10): 1762-1775.
杨金龙, 程小雪, 缪佳妮, 等. 检测优化的多伯努利视频多目标跟踪算法[J]. 计算机科学与探索, 2020, 14(10): 1762-1775.
[9] KIM Y, KANG B N, KIM D. SAN: learning relationship be-tween convolutional features for multi-scale object detection [C]//LNCS 11209: Proceedings of the 15th European Con-ference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 328-343.
[10] DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 30th Annual Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 379-387.
[11] REN S Q, HE K M, GIRSHICK R B, et al. Faster R-CNN: towards real-time object detection with region proposal net-works[J]. IEEE Transactions on Pattern Analysis and Mach-ine Intelligence, 2017, 39(6): 1137-1149.
[12] YANG F, CHOI W, LIN Y Q. Exploit all the layers: fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Re-cognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2129-2137.
[13] JOSEPH R, ALI F. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vi-sion and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6517-6525.
[14] FENG W T, HU Z H, WU W, et al. Multi-object tracking with multiple cues and switcher-aware classification[J]. arXiv: 1901.06129, 2019.
[15] BERGMANN P, MEINHARDT T. Tracking without bells and whistles[J]. arXiv:1903.05625, 2019.
[16] BOCHINSKI E, EISELEIN V, SIKORA T. High-speed tracking- by-detection without using image information[C]//Proceed-ings of the 2017 14th International Conference on Advanced Video and Signal Based Surveillance, Lecce, Aug 29-Sep 1, 2017. Washington: IEEE Computer Society, 2017: 1-6.
[17] BOCHINSKI E, SENST T, SIKORA T, et al. Extending IOU based multi-object tracking by visual information[C]//Pro-ceedings of the 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance, Auck-land, Nov 27-30, 2018. Piscataway: IEEE, 2018: 1-6.
[18] SANCHEZ-MATILLA R, POIESI F, CAVALLARO A. On-line multi-target tracking with strong and weak detections[C]//LNCS 9914: Proceedings of the 14th European Con-ference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 84-99.
[19] PAUL V, MICHAEL K, ALJOSA O, et al. MOTS: multi-object tracking and segmentation[J]. arXiv:1902.03604, 2019.
[20] XIANG Y, ALAHI A, SILVIO S. Learning to track: online multi-object tracking by decision making[C]//Proceedings of the 2015 IEEE International Conference on Computer Vi-sion, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 4705-4713.
[21] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3): 583-596.
[22] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Com-puter Society Conference on Computer Vision and Pattern Recognition, San Diego, Jun 20-25, 2005. Washington: IEEE Computer Society, 2005: 886-893.
[23] MARTIN D, GUSTAV H, FAHAD S K, et al. Accurate scale estimation for robust visual tracking[C]//Proceedings of the 25th British Machine Vision Conference, Nottingham, Sep 1-5, 2014. BMVA Press, 2014: 1-11.
[24] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploi-ting the circulant structure of tracking-by-detection with kernels[C]//LNCS 7575: Proceedings of the 12th European Conference on Computer Vision, Florence, Oct 7-13, 2012. Berlin, Heidelberg: Springer, 2012: 702-715.
[25] DANELLJAN M, H?GER G, KHAN F S, et al. Discrimin-ative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1561-1575.
[26] LIU T, WANG G, YANG Q X. Real-time part-based visual tracking via adaptive correlation filters[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Com-puter Society, 2015: 4902-4912.
[27] SUN S J, AKHTAR N, SONG H S, et al. Deep affinity net-work for multiple object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 104-119.
[28] WOJKE N, BEWLEY A, PAULUS D. Simple online and real-time tracking with a deep association metric[C]//Proceed-ings of the 2017 IEEE International Conference on Image Processing, Beijing, Sep 17-20, 2017. Piscataway: IEEE, 2017: 3645-3649.
[29] BEWLEY A, GE Z Y, OTT L, et al. Simple online and real-time tracking[C]//Proceedings of the 2016 IEEE Interna-tional Conference on Image Processing, Phoenix, Sep 25-28, 2016. Piscataway: IEEE, 2016: 3464-3468.
[30] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D A, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645.
[31] ANTON M, LAURA L, IAN R, et al. MOT16: a benchmark for multi-object tracking[J]. arXiv:1603.00831, 2016. |