[1] XU Z N. Research on vehicle tracking method based on video in complex road scene[D]. Xi??an: Xi??an University of Tech-nology, 2019.
胥中南. 复杂道路场景下基于视频的车辆跟踪方法研究[D]. 西安: 西安理工大学, 2019.
[2] XIA K F, LI P F, CHEN X P. People tracking of mobile robot using improved particle filter[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(11): 1849-1859.
夏克付, 李鹏飞, 陈小平. 基于改进粒子滤波的移动机器人行人跟踪[J]. 计算机科学与探索, 2017, 11(11): 1849-1859.
[3] ZHU H N, XU M M, SHEN Y. Research on multi video vehicle tracking based on mean shift[J]. Computer Science, 2018, 45(S1): 220-226.
朱浩楠, 许明敏, 沈瑛. 基于Mean Shift的多视频车辆跟踪研究[J]. 计算机科学, 2018, 45(S1): 220-226.
[4] VOJIR T, NOSKOVA J, MATAS J. Robust scale-adaptive mean-shift for tracking[J]. Pattern Recognition Letters, 2014, 49: 250-258.
[5] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, Jun 13-18, 2010. Piscataway: IEEE, 2010: 2544-2550.
[6] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exp-loiting the circulant structure of tracking-by-detection with kernels[C]//LNCS 7575: Proceedings of the 12th European Conference on Computer Vision, Florence, Oct 7-13, 2012. Berlin, Heidelberg: Springer, 2012: 702-715.
[7] DANELLJAN M, KHAN F S, FELSBERG M, et al. Adap-tive color attributes for real-time visual tracking[C]//Procee-dings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 24-27, 2014. Pisca-taway: IEEE, 2014: 1090-1097.
[8] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation fliter[J]. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.
[9] NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 4293-4302.
[10] ONDRUSKA P, POSNER I. Deep tracking: seeing beyond seeing using recurrent neural networks[J]. arXiv:1602.00991, 2016.
[11] WU Y, LIM J, YANG M H. Online object tracking: a bench-mark[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, Jun 23-28, 2013. Piscataway: IEEE, 2013: 2411-2418.
[12] WU Y, LIM J, YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2015, 37(9): 1834-1848.
[13] MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Ams-terdam, Oct 11-14, 2016. Berlin, Heidelberg: Springer, 2016: 445-461.
[14] DANELLJAN M, H?GER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking [C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 4310-4318.
[15] LI Y, ZHU J K, HOI S C H. Reliable patch trackers: robust visual tracking by exploiting reliable patches[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Piscataway: IEEE, 2015: 353-361.
[16] DANELLJAN M, H?GER G, KHAN F S, et al. Accurate scale estimation for robust visual tracking[C]//Proceedings of the 2014 British Machine Vision Conference, Nottingham, Sep 1-5, 2014. BMVA Press, 2014: 15-25.
[17] ZHANG K H, ZHANG L, YANG M H, et al. Real-time compressive tracking[C]//LNCS 7574: Proceedings of the 12th European Conference on Computer Vision, Florence, Oct 7-13, 2012. Berlin, Heidelberg: Springer, 2012: 864-877.
[18] HARE S, SAFFARI A, TORR P H S. Struck: structured output tracking with kernels[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Nov 6-13, 2011. Washington: IEEE Computer Society, 2011: 263-270. |