计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (1): 176-184.DOI: 10.3778/j.issn.1673-9418.2103072
收稿日期:
2021-03-22
修回日期:
2021-06-15
出版日期:
2022-01-01
发布日期:
2021-06-17
通讯作者:
+ E-mail: yangxy@xju.edu.cn作者简介:
李想(1996—), 男, 湖北随州人, 硕士研究生, CCF会员,主要研究方向为推荐系统。基金资助:
LI Xiang, YANG Xingyao+(), YU Jiong, QIAN Yurong, ZHENG Jie
Received:
2021-03-22
Revised:
2021-06-15
Online:
2022-01-01
Published:
2021-06-17
About author:
LI Xiang, born in 1996, M.S. candidate, member of CCF. His research interest is recommender system.Supported by:
摘要:
知识图谱(KG)提供了一种数据结构来生成基于内容和协同过滤的混合推荐,但现有的基于知识图谱推荐方法对用户属性信息的考虑少于对物品属性的考虑,针对这一问题,提出了基于知识图谱卷积网络的双端推荐算法(DEKGCN)。该算法用知识图谱中每一个实体邻域的抽取样本作为其高阶接受域,用数据集中用户的相关属性作为其一阶接受域,在计算给定实体和用户的表示时分别结合各自的邻域信息,最后得到用户对物品的偏好概率。用户端和物品端的多种信息被用来学习用户和物品的向量表示,有效解决了数据稀疏和冷启动问题。在真实数据集上的实验结果表明,DEKGCN与其他基准模型相比推荐质量有较大提升。
中图分类号:
李想, 杨兴耀, 于炯, 钱育蓉, 郑捷. 基于知识图谱卷积网络的双端推荐算法[J]. 计算机科学与探索, 2022, 16(1): 176-184.
LI Xiang, YANG Xingyao, YU Jiong, QIAN Yurong, ZHENG Jie. Double End Knowledge Graph Convolutional Networks for Recommender Systems[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 176-184.
数据集/图谱 | 数量名称 | MovieLens-1M |
---|---|---|
用户-物品交互 | 用户数量 | 6 036 |
物品数量 | 2 347 | |
用户-物品交互数量 | 753 772 | |
sub-KG | 三元组数量 | 20 195 |
实体数量 | 7 008 | |
关系数量 | 7 | |
| 三元组数量 | 30 180 |
实体数量(不包含用户) | 3 466 | |
关系数量 | 4 |
表1 数据集和知识图谱的基本统计数据
Table 1 Basic statistics for dataset and knowledge graph
数据集/图谱 | 数量名称 | MovieLens-1M |
---|---|---|
用户-物品交互 | 用户数量 | 6 036 |
物品数量 | 2 347 | |
用户-物品交互数量 | 753 772 | |
sub-KG | 三元组数量 | 20 195 |
实体数量 | 7 008 | |
关系数量 | 7 | |
| 三元组数量 | 30 180 |
实体数量(不包含用户) | 3 466 | |
关系数量 | 4 |
模型 | AUC | Precision | F1 |
---|---|---|---|
MKR | 0.901 6 | 0.823 8 | 0.826 2 |
KGNN-LS | 0.898 4 | 0.819 7 | 0.821 7 |
KGCN | 0.892 7 | 0.813 6 | 0.816 0 |
DEKGCN | 0.916 8 | 0.842 0 | 0.845 0 |
表2 CTR预测的AUC、Precision和F1结果
Table 2 Result of AUC, Precision and F1 in CTR prediction
模型 | AUC | Precision | F1 |
---|---|---|---|
MKR | 0.901 6 | 0.823 8 | 0.826 2 |
KGNN-LS | 0.898 4 | 0.819 7 | 0.821 7 |
KGCN | 0.892 7 | 0.813 6 | 0.816 0 |
DEKGCN | 0.916 8 | 0.842 0 | 0.845 0 |
[1] | WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 950-958. |
[2] |
HE M, WANG B, DU X. HI2Rec: exploring knowledge in heterogeneous information for movie recommendation[J]. IEEE Access, 2019, 7:30276-30284.
DOI URL |
[3] | 高仰, 刘渊. 融合知识图谱和短期偏好的推荐算法[J]. 计算机科学与探索, 2021, 15(6):1133-1144. |
GAO Y, LIU Y. Recommendation algorithm combining knowledge graph and short-term preferences[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6):1133-1144. | |
[4] | 张玉洁, 董政, 孟祥武. 个性化广告推荐系统及其应用研究[J]. 计算机学报, 2021, 44(3):531-563. |
ZHANG Y J, DONG Z, MENG X W. Pesearch on personalized advertising pecommendation systems and their applications[J]. Chinese Journal of Computers, 2021, 44(3):531-563. | |
[5] | 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7):1619-1647. |
HUANG L W, JIANG B T, LV S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7):1619-1647. | |
[6] |
WANG Q, MAO Z, WANG B, et al. Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12):2724-2743.
DOI URL |
[7] | BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, Jun 9-12, 2008. New York: ACM, 2008: 1247-1250. |
[8] |
LEHMANN J, ISELE R, JAKOB M, et al. DBpedia—a large-scale, multilingual knowledge base extracted from Wikipedia[J]. Semantic Web, 2015, 6(2):167-195.
DOI URL |
[9] | FABIAN M S, GJERGJI K, GERHARD W. YAGO: a core of semantic knowledge unifying WordNet and Wikipedia[C]// Proceedings of the 16th International World Wide Web Conference, Alberta, May 8-12, 2007. New York: ACM, 2007: 697-706. |
[10] | WANG H, ZHAO M, XIE X, et al. Knowledge graph con-volutional networks for recommender systems[C]// Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3307-3313. |
[11] | 李鹏飞, 吴为民. 基于混合模型推荐算法的优化[J]. 计算机科学, 2014, 41(2):68-71. |
LI P F, WU W M. Optimized implementation of hybrid recommendation algorithm[J]. Computer Science, 2014, 41(2):68-71. | |
[12] | 丁少衡, 姬东鸿, 王路路. 基于用户属性和评分的协同过滤推荐算法[J]. 计算机工程与设计, 2015, 36(2):487-491. |
DING S H, JI D H, WANG L L. Collaborative filtering recommendation algorithm based on user attributes and scores[J]. Computer Engineering and Design, 2015, 36(2):487-491. | |
[13] | 申晋祥, 鲍美英. 基于用户聚类与项目划分的优化推荐算法[J]. 计算机系统应用, 2019, 28(6):159-164. |
SHEN J X, DAO M Y. Optimal recommendation algorithm based on user clustering and project partition[J]. Computer Systems & Applications, 2019, 28(6):159-164. | |
[14] | 梁丽君, 李业刚, 张娜娜, 等. 融合用户特征优化聚类的协同过滤算法[J]. 智能系统学报, 2020, 15(6):1091-1096. |
LIANG L J, LI Y G, ZHANG N N, et al. Collaborative filtering algorithm combining user features and preferences in optimized clustering[J]. CAAI Transactions on Intelligent Systems, 2020, 15(6):1091-1096. | |
[15] | 秦川, 祝恒书, 庄福振, 等. 基于知识图谱的推荐系统研究综述[J]. 中国科学(信息科学), 2020, 50(7):937-956. |
QIN C, ZHU H S, ZHUANG F Z, et al. A survey on knowledge graph-based recommender systems[J]. Science in China (Information Sciences), 2020, 50(7):937-956. | |
[16] | WANG H W, ZHANG F Z, HOU M, et al. Shine: signed heterogeneous information network embedding for sentiment link prediction[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Marina Del Rey, Feb 5-9, 2018. New York: ACM, 2018: 592-600. |
[17] | WANG H W, ZHANG F Z, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]// Proceedings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 1835-1844. |
[18] | ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]// Proceedings of the 22nd ACM SIGKDD International Confer-ence on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 353-362. |
[19] | ZHAO H, YAO Q M, LI J D, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]// Proceedings of the 23rd ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 635-644. |
[20] | YU X, REN X, SUN Y Z, et al. Personalized entity recom-mendation: a heterogeneous information network approach[C]// Proceedings of the 7th ACM International Conference on Web Search and Data Mining, New York, Feb 24-28, 2014. New York: ACM, 2014: 283-292. |
[21] | TANG X L, WANG T Y, YANG H Z, et al. AKUPM: attention-enhanced knowledge-aware user preference model for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 1891-1899. |
[22] | WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 417-426. |
[23] | WANG H, WANG J, WANG J, et al. GraphGAN: graph representation learning with generative adversarial nets[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 2508-2515. |
[24] | BORDES A, USUNIER N, GARCÍA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 27th Annual Conference on Neural Information Processing Systems,Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 2787-2795. |
[25] | WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 1112-1119. |
[26] |
LIN H, LIU Y, WANG W, et al. TransR: learning entity and relation embeddings for knowledge resolution[J]. Procedia Computer Science, 2017, 108:345-354.
DOI URL |
[27] | JI G L, HE S Z, XU L H, et al. Knowledge graph embed-ding via dynamic mapping matrix[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 687-696. |
[28] | NICKEL M, TRESP V, KRIEGEL H P. Factorizing YAGO: scalable machine learning for linked data[C]// Proceedings of the 21st World Wide Web Conference 2012, Lyon, Apr 16-20, 2012. New York: ACM, 2012: 271-280. |
[29] | YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[J]. arXiv:1412.6575, 2014. |
[30] | TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]// Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 2071-2080. |
[31] | WANG H W, ZHANG F Z, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommen-dation[C]// Proceedings of the 2019 World Wide Web Con-ference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 2000-2010. |
[32] | WANG H W, ZHANG F Z, ZHANG M D, et al. Knowledge-aware graph neural networks with label smoothness regulariza-tion for recommender systems[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 968-977. |
[1] | 陈江美, 张文德. 基于位置社交网络的兴趣点推荐系统研究综述[J]. 计算机科学与探索, 2022, 16(7): 1462-1478. |
[2] | 郭晓旺, 夏鸿斌, 刘渊. 融合知识图谱与图卷积网络的混合推荐模型[J]. 计算机科学与探索, 2022, 16(6): 1343-1353. |
[3] | 武森, 董雅贤, 魏桂英, 高晓楠. 面向稀疏数据的协同过滤用户相似度计算研究[J]. 计算机科学与探索, 2022, 16(5): 1043-1052. |
[4] | 夏光兵, 李瑞轩, 辜希武, 刘伟. 融合多源信息的知识表示学习[J]. 计算机科学与探索, 2022, 16(3): 591-597. |
[5] | 武家伟, 孙艳春. 融合知识图谱和深度学习方法的问诊推荐系统[J]. 计算机科学与探索, 2021, 15(8): 1432-1440. |
[6] | 高仰, 刘渊. 融合知识图谱和短期偏好的推荐算法[J]. 计算机科学与探索, 2021, 15(6): 1133-1144. |
[7] | 邢长征,郭亚兰,张全贵,赵宏宝. 融合短文本层级注意力和时间信息的推荐方法[J]. 计算机科学与探索, 2021, 15(11): 2222-2232. |
[8] | 陈子阳, 廖劲智, 赵翔, 陈盈果. 融合子图结构的神经推理式知识库问答方法[J]. 计算机科学与探索, 2021, 15(10): 1870-1879. |
[9] | 蔺奇卡, 张玲玲, 刘均, 赵天哲. 基于问句感知图卷积的教育知识库问答方法[J]. 计算机科学与探索, 2021, 15(10): 1880-1887. |
[10] | 李广丽,滑瑾,袁天,朱涛,邬任重,姬东鸿,张红斌. 基于用户偏好挖掘生成对抗网络的推荐系统[J]. 计算机科学与探索, 2020, 14(5): 803-814. |
[11] | 王玮皓,陈松灿. 双曲因子分解机[J]. 计算机科学与探索, 2020, 14(4): 590-597. |
[12] | 刘忠慧,邹璐,杨梅,闵帆. 启发式概念构造的组推荐方法[J]. 计算机科学与探索, 2020, 14(4): 703-711. |
[13] | 王绍卿,李鑫鑫,孙福振,方春. 个性化新闻推荐技术研究综述[J]. 计算机科学与探索, 2020, 14(1): 18-29. |
[14] | 李幸幸,刘华锋,景丽萍. 混合秩矩阵分解模型[J]. 计算机科学与探索, 2019, 13(7): 1114-1122. |
[15] | 王宇琛,王宝亮,侯永宏. 融合协同过滤与上下文信息的Bandits推荐算法[J]. 计算机科学与探索, 2019, 13(3): 361-373. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||