计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (1): 185-193.DOI: 10.3778/j.issn.1673-9418.2009049

• 人工智能 • 上一篇    下一篇

基于重构误差的同构图分类模型

蒋光峰, 胡鹏程, 叶桦, 仰燕兰+()   

  1. 东南大学 自动化学院,南京 210096
  • 收稿日期:2020-09-17 修回日期:2020-11-11 出版日期:2022-01-01 发布日期:2020-12-03
  • 通讯作者: + E-mail: yyl@seu.edu.cn
  • 作者简介:蒋光峰(1995—),男,安徽马鞍山人,硕士研究生,主要研究方向为模式识别与智能系统、计算机视觉、视频理解。
    胡鹏程(1996—),男,江苏宿迁人,硕士研究生,主要研究方向为模式识别与智能系统、推荐系统、网络信息安全。
    叶桦(1961—),男,江苏南京人,博士,教授,主要研究方向为智能控制、模式识别、计算机应用、智能大厦、智能机器人、故障诊断等。
    仰燕兰(1981—),女,江苏苏州人,博士,讲师,主要研究方向为模式识别与智能系统、计算机网络通信、大型数据库建模与优化等。
  • 基金资助:
    中央高校基本科研业务费专项资金(2242020K40244)

Isomorphic Graph Classification Model Based on Reconstruction Error

JIANG Guangfeng, HU Pengcheng, YE Hua, YANG Yanlan+()   

  1. School of Automation, Southeast University, Nanjing 210096, China
  • Received:2020-09-17 Revised:2020-11-11 Online:2022-01-01 Published:2020-12-03
  • About author:JIANG Guangfeng, born in 1995, M.S. candidate. His research interests include pattern recognition and intelligent system, computer vision and video understanding.
    HU Pengcheng, born in 1996, M.S. candidate. His research interests include pattern recognition and intelligent system, recommendation system and network information security.
    YE Hua, born in 1961, Ph.D., professor. His research interests include intelligence control, pattern recognition, computer application, intelligence building, intelligence robot, fault diagnosis, etc.
    YANG Yanlan, born in 1981, Ph.D., lecturer. Her research interests include pattern recognition and intelligent system, computer network communication, large database modeling and optimization, etc.
  • Supported by:
    Fundamental Research Funds for the Central Universities of China(2242020K40244)

摘要:

目前深度学习方法应用于图分类模型的重点集中在将卷积神经网络迁移到图数据领域,包括重定义卷积层和池化层。卷积操作泛化到图数据上是有效的方法,但无论是卷积还是池化都存在较大的改进空间,尤其是在提取网络拓扑结构信息方面。提出一种基于重构误差的同构图分类模型,一方面利用改进的同构图卷积网络WaveGIC增强提取拓扑结构信息能力;另一方面利用多重注意力机制表征全图,使得模型能够关注关键节点信息。由于网络加深过程,局部拓扑结构的特征表达越来越不明显。在分类损失基础上添加重构误差损失,使分类器同时考虑图的节点特征和拓扑结构。在基准数据集上的实验结果表明,提出的方法具有较高的图分类准确度。

关键词: 图神经网络(GNN), 图分类, 重构误差, 注意力机制

Abstract:

At present, the application of deep learning method in graph classification model focuses on the migration of convolutional neural network to graph data field, including redefinition of convolutional layer and pooling layer. Generalization of convolution operation to graph data is an effective method. However, both the convolutional layer and the global pooling layer have great room for improvement, especially in the extraction of network topology information. A new isomorphism classification model based on reconstruction error is proposed. On the one hand, WaveGIC is used to improve the ability of extracting topology information. On the other hand, multi-attention mechanism is used to represent the whole picture, which enables the model to pay attention to the information of key nodes. Due to the network deepening process, the characteristic expression of local topological structure is less and less obvious. Based on the classification loss, the reconstruction error loss is added to make the classifier consider the node characteristics and topology structure of the graph at the same time. Experimental results on the benchmark data set show that the proposed method has high accuracy of graph classification.

Key words: graph neural network (GNN), graph classification, reconstruction error, attention mechanism

中图分类号: