计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (1): 194-204.DOI: 10.3778/j.issn.1673-9418.2007038
章枫叶欣1, 王骏2,+(), 贾修一3, 潘祥1, 邓赵红1, 施俊2, 王士同1
收稿日期:
2020-07-13
修回日期:
2020-11-03
出版日期:
2022-01-01
发布日期:
2020-11-25
通讯作者:
+ E-mail: wangjun_shu@shu.edu.cn作者简介:
章枫叶欣(1996—),男,浙江丽水人,硕士研究生,主要研究方向为人工智能、模式识别。基金资助:
ZHANG Fengyexin1, WANG Jun2,+(), JIA Xiuyi3, PAN Xiang1, DENG Zhaohong1, SHI Jun2, WANG Shitong1
Received:
2020-07-13
Revised:
2020-11-03
Online:
2022-01-01
Published:
2020-11-25
About author:
ZHANG Fengyexin, born in 1996, M.S. candidate. His research interests include artificial intelligence and pattern recognition.Supported by:
摘要:
自闭症谱性障碍(ASD)是一系列复杂的神经发展障碍性疾病,其包括若干与发育障碍相关的疾病,但是现有的自闭症辅助诊断方法大多是二分类方法,无法满足现实的需要。此外,ASD数据包含的标记噪声,以及高维度、数据分布不平衡等特点给传统分类方法带来了巨大的挑战。为此,提出一种新型的ASD辅助诊断方法,该方法通过引入标记分布学习(LDL)来解决标记噪声问题,引入代价敏感机制来解决样本不平衡问题,并采用基于支持向量回归(SVR)的标记分布学习方法,通过将样本映射到特征空间,解决高维特征带来的分类困难,最终实现多分类ASD的辅助诊断。实验结果表明,与已有方法比较,所提方法克服了多数类和少数类对结果的影响的不平衡性,可以有效地解决ASD诊断中的不平衡数据问题,拥有更好且稳定的分类性能,可以辅助ASD的诊断。
中图分类号:
章枫叶欣, 王骏, 贾修一, 潘祥, 邓赵红, 施俊, 王士同. 面向多分类自闭症辅助诊断的标记分布学习[J]. 计算机科学与探索, 2022, 16(1): 194-204.
ZHANG Fengyexin, WANG Jun, JIA Xiuyi, PAN Xiang, DENG Zhaohong, SHI Jun, WANG Shitong. Label Distribution Learning for Computer Aided Diagnosis of Multi-class ASD Classification[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 194-204.
指标 | 公式 | |
---|---|---|
标记分布指标 | Chebyshev↓ | |
KL↓ | | |
Clark↓ | | |
Canberra↓ | | |
Intersection↑ | | |
Cosine↑ | | |
多分类指标 | Precision↑ | |
mAP↑ | |
表1 评估指标
Table 1 Evaluation measures
指标 | 公式 | |
---|---|---|
标记分布指标 | Chebyshev↓ | |
KL↓ | | |
Clark↓ | | |
Canberra↓ | | |
Intersection↑ | | |
Cosine↑ | | |
多分类指标 | Precision↑ | |
mAP↑ | |
数据集 | 样本数 | 正常 | 自闭症 | 亚斯伯格症候群 |
---|---|---|---|---|
NYU | 177 | 103 | 53 | 21 |
UM | 144 | 76 | 57 | 11 |
KKI | 48 | 31 | 8 | 9 |
Leuven | 102 | 62 | 21 | 19 |
UCLA | 81 | 53 | 16 | 12 |
表2 数据集的统计信息
Table 2 Statistics of datasets
数据集 | 样本数 | 正常 | 自闭症 | 亚斯伯格症候群 |
---|---|---|---|---|
NYU | 177 | 103 | 53 | 21 |
UM | 144 | 76 | 57 | 11 |
KKI | 48 | 31 | 8 | 9 |
Leuven | 102 | 62 | 21 | 19 |
UCLA | 81 | 53 | 16 | 12 |
对比算法名称 | 对比算法说明 |
---|---|
PT-SVM[ | 基于问题转化的SVM,利用改进的Platt后验概率得到二值向量机的概率,通过逐对耦合多类方法得到预测的标记分布 |
PT-BAYES[ | 基于问题转化的BAYES假设每个类都服从Gauss分布,由此计算后验概率作为预测的标记分布 |
AA-KNN[ | 基于算法改造的KNN将K个近邻的标记的均值作为预测的标记分布 |
AA-BP[ | 基于算法改造的BP神经网络利用softmax激活输出,作为预测的标记分布 |
SA-IIS[ | 基于专用算法的IIS使用一种改进迭代尺度算法优化目标函数 |
LDSVR[ | 基于专用算法的LDSVR使用了支持向量回归改进目标函数,并用拟牛顿法优化 |
Decision Tree[ | 基于实例的归纳学习方法,能从给定的无序的训练样本中,提炼出树型的分类模型 |
KNN[ | 基于实例的分类方法,借由样本在特征空间中的K个最相邻的样本来为样本分类 |
表3 对比算法
Table 3 Comparison algorithms
对比算法名称 | 对比算法说明 |
---|---|
PT-SVM[ | 基于问题转化的SVM,利用改进的Platt后验概率得到二值向量机的概率,通过逐对耦合多类方法得到预测的标记分布 |
PT-BAYES[ | 基于问题转化的BAYES假设每个类都服从Gauss分布,由此计算后验概率作为预测的标记分布 |
AA-KNN[ | 基于算法改造的KNN将K个近邻的标记的均值作为预测的标记分布 |
AA-BP[ | 基于算法改造的BP神经网络利用softmax激活输出,作为预测的标记分布 |
SA-IIS[ | 基于专用算法的IIS使用一种改进迭代尺度算法优化目标函数 |
LDSVR[ | 基于专用算法的LDSVR使用了支持向量回归改进目标函数,并用拟牛顿法优化 |
Decision Tree[ | 基于实例的归纳学习方法,能从给定的无序的训练样本中,提炼出树型的分类模型 |
KNN[ | 基于实例的分类方法,借由样本在特征空间中的K个最相邻的样本来为样本分类 |
参数名 | 参数范围 |
---|---|
权重系数 | 0.001,0.01,0.1,1,10,100,1 000 |
核函数的类型 | 线性核、多项式核、高斯核 |
不敏感区大小 | 0.000 1,0.001,0.01,0.1 |
高斯核的核带宽 | 0.01,0.1,1,10,100 |
表4 参数范围
Table 4 Range of parameters
参数名 | 参数范围 |
---|---|
权重系数 | 0.001,0.01,0.1,1,10,100,1 000 |
核函数的类型 | 线性核、多项式核、高斯核 |
不敏感区大小 | 0.000 1,0.001,0.01,0.1 |
高斯核的核带宽 | 0.01,0.1,1,10,100 |
评估指标 | 算法 | NYU | UM | Leuven | UCLA | KKI |
---|---|---|---|---|---|---|
Chebyshev↓ | AA-BP | 0.223 7±0.035 6 | 0.218 4±0.045 8 | 0.248 0±0.044 6 | 0.250 6±0.053 5 | 0.254 7±0.052 9 |
AA-KNN | 0.144 1±0.011 6 | 0.154 0±0.021 1 | 0.157 9±0.026 5 | 0.142 6±0.031 3 | 0.157 2±0.029 5 | |
LDSVR | 0.150 1±0.024 3 | 0.140 0±0.012 8 | 0.162 9±0.034 4 | 0.169 4±0.053 4 | 0.160 2±0.057 0 | |
SA-IIS | 0.147 8±0.011 8 | 0.153 5±0.023 7 | 0.174 8±0.021 4 | 0.145 8±0.032 9 | 0.162 7±0.049 5 | |
PT-BAYES | 0.381 8±0.111 9 | 0.205 7±0.009 5 | 0.206 9±0.007 8 | 0.213 5±0.009 9 | 0.215 4±0.008 1 | |
PT-SVM | 0.200 5±0.041 2 | 0.188 5±0.042 3 | 0.183 1±0.040 1 | 0.195 8±0.033 0 | 0.182 2±0.058 9 | |
CSLDSVR | 0.141 3±0.016 2 | 0.135 2±0.023 6 | 0.140 2±0.024 4 | 0.138 6±0.038 4 | 0.126 7±0.034 9 | |
Cosine↑ | AA-BP | 0.873 1±0.034 4 | 0.881 8±0.035 6 | 0.862 2±0.049 8 | 0.839 9±0.057 8 | 0.843 7±0.058 6 |
AA-KNN | 0.935 4±0.009 6 | 0.928 6±0.017 3 | 0.927 4±0.020 8 | 0.929 7±0.022 4 | 0.913 0±0.024 4 | |
LDSVR | 0.937 7±0.019 1 | 0.944 8±0.013 3 | 0.932 5±0.029 2 | 0.928 5±0.052 0 | 0.932 6±0.047 4 | |
SA-IIS | 0.940 7±0.009 3 | 0.934 4±0.016 7 | 0.920 5±0.016 0 | 0.939 5±0.020 3 | 0.924 6±0.042 5 | |
PT-BAYES | 0.798 5±0.071 3 | 0.915 6±0.006 2 | 0.915 1±0.005 3 | 0.910 4±0.006 9 | 0.909 2±0.005 7 | |
PT-SVM | 0.898 7±0.038 5 | 0.904 3±0.042 8 | 0.914 5±0.030 9 | 0.897 4±0.036 5 | 0.906 8±0.045 8 | |
CSLDSVR | 0.940 5±0.012 1 | 0.947 3±0.018 3 | 0.923 4±0.025 5 | 0.942 8±0.036 8 | 0.936 3±0.029 4 | |
Clark↓ | AA-BP | 0.468 1±0.064 8 | 0.461 3±0.099 0 | 0.517 0±0.083 8 | 0.537 1±0.110 1 | 0.542 7±0.104 6 |
AA-KNN | 0.263 1±0.020 3 | 0.282 2±0.036 7 | 0.287 3±0.047 3 | 0.261 3±0.053 5 | 0.283 2±0.053 9 | |
LDSVR | 0.272 9±0.036 4 | 0.255 7±0.021 8 | 0.287 2±0.062 6 | 0.295 6±0.092 0 | 0.281 9±0.100 8 | |
SA-IIS | 0.266 3±0.019 1 | 0.278 8±0.039 7 | 0.311 3±0.033 6 | 0.262 3±0.055 5 | 0.293 9±0.088 0 | |
PT-BAYES | 0.893 6±0.359 8 | 0.352 0±0.014 5 | 0.352 3±0.012 7 | 0.363 6±0.016 2 | 0.366 3±0.013 3 | |
PT-SVM | 0.358 0±0.070 2 | 0.348 1±0.075 8 | 0.325 3±0.065 5 | 0.350 5±0.056 1 | 0.328 7±0.098 1 | |
CSLDSVR | 0.261 6±0.032 1 | 0.246 3±0.037 6 | 0.253 9±0.041 8 | 0.248 4±0.062 6 | 0.233 4±0.061 8 | |
Canberra↓ | AA-BP | 0.717 6±0.102 8 | 0.710 4±0.152 9 | 0.810 8±0.125 6 | 0.811 8±0.169 0 | 0.831 9±0.160 2 |
AA-KNN | 0.406 6±0.029 4 | 0.429 6±0.057 3 | 0.447 5±0.070 7 | 0.398 4±0.084 9 | 0.438 0±0.083 1 | |
LDSVR | 0.432 1±0.064 3 | 0.399 8±0.039 2 | 0.469 9±0.097 7 | 0.493 5±0.129 8 | 0.464 0±0.159 8 | |
SA-IIS | 0.426 8±0.034 2 | 0.438 4±0.067 8 | 0.502 2±0.060 1 | 0.422 4±0.093 5 | 0.469 6±0.127 4 | |
PT-BAYES | 1.472 1±0.574 8 | 0.602 2±0.026 9 | 0.604 8±0.022 9 | 0.624 5±0.029 1 | 0.629 9±0.023 9 | |
PT-SVM | 0.573 6±0.106 2 | 0.541 1±0.127 7 | 0.522 7±0.111 0 | 0.551 0±0.087 4 | 0.511 5±0.165 9 | |
CSLDSVR | 0.386 3±0.047 1 | 0.387 5±0.061 7 | 0.393 8±0.069 5 | 0.402 3±0.109 2 | 0.354 4±0.093 9 | |
Intersection↑ | AA-BP | 0.776 3±0.035 6 | 0.781 6±0.045 8 | 0.752 0±0.044 6 | 0.749 4±0.053 5 | 0.745 3±0.052 9 |
AA-KNN | 0.855 9±0.011 6 | 0.846 0±0.021 1 | 0.842 1±0.026 5 | 0.857 4±0.031 3 | 0.842 8±0.029 5 | |
LDSVR | 0.849 9±0.024 3 | 0.860 0±0.012 8 | 0.837 1±0.034 4 | 0.830 6±0.053 4 | 0.839 8±0.057 0 | |
SA-IIS | 0.852 2±0.011 8 | 0.846 5±0.023 7 | 0.825 2±0.021 4 | 0.854 2±0.032 9 | 0.837 3±0.049 5 | |
PT-BAYES | 0.618 2±0.111 9 | 0.794 3±0.009 5 | 0.793 1±0.007 8 | 0.786 5±0.009 9 | 0.784 6±0.008 1 | |
PT-SVM | 0.799 5±0.041 2 | 0.811 5±0.042 3 | 0.816 9±0.040 1 | 0.804 2±0.033 0 | 0.817 8±0.058 9 | |
CSLDSVR | 0.858 7±0.041 5 | 0.864 8±0.023 6 | 0.859 8±0.024 4 | 0.861 4±0.038 4 | 0.873 3±0.034 9 | |
KL↑ | AA-BP | 0.166 7±0.042 9 | 0.161 2±0.051 7 | 0.192 0±0.069 3 | 0.222 2±0.089 8 | 0.227 9±0.076 4 |
AA-KNN | 0.068 5±0.010 1 | 0.076 0±0.018 4 | 0.076 6±0.022 1 | 0.074 6±0.023 2 | 0.093 2±0.026 6 | |
LDSVR | 0.066 5±0.019 9 | 0.059 3±0.014 6 | 0.070 3±0.032 3 | 0.074 9±0.062 5 | 0.071 1±0.049 8 | |
SA-IIS | 0.063 9±0.009 3 | 0.069 8±0.017 8 | 0.083 7±0.016 6 | 0.063 9±0.021 0 | 0.080 0±0.044 1 | |
PT-BAYES | 0.492 9±0.251 0 | 0.087 9±0.006 7 | 0.088 0±0.006 1 | 0.093 5±0.008 0 | 0.094 8±0.006 6 | |
PT-SVM | 0.108 1±0.041 2 | 0.105 5±0.047 6 | 0.090 6±0.032 9 | 0.110 4±0.040 5 | 0.100 3±0.048 1 | |
CSLDSVR | 0.060 3±0.041 5 | 0.056 7±0.019 5 | 0.069 9±0.024 0 | 0.060 1±0.046 1 | 0.068 2±0.030 1 |
表5 CSLDSVR和标记分布算法的性能比较
Table 5 Performance comparison of CSLDSVR and LDL algorithms
评估指标 | 算法 | NYU | UM | Leuven | UCLA | KKI |
---|---|---|---|---|---|---|
Chebyshev↓ | AA-BP | 0.223 7±0.035 6 | 0.218 4±0.045 8 | 0.248 0±0.044 6 | 0.250 6±0.053 5 | 0.254 7±0.052 9 |
AA-KNN | 0.144 1±0.011 6 | 0.154 0±0.021 1 | 0.157 9±0.026 5 | 0.142 6±0.031 3 | 0.157 2±0.029 5 | |
LDSVR | 0.150 1±0.024 3 | 0.140 0±0.012 8 | 0.162 9±0.034 4 | 0.169 4±0.053 4 | 0.160 2±0.057 0 | |
SA-IIS | 0.147 8±0.011 8 | 0.153 5±0.023 7 | 0.174 8±0.021 4 | 0.145 8±0.032 9 | 0.162 7±0.049 5 | |
PT-BAYES | 0.381 8±0.111 9 | 0.205 7±0.009 5 | 0.206 9±0.007 8 | 0.213 5±0.009 9 | 0.215 4±0.008 1 | |
PT-SVM | 0.200 5±0.041 2 | 0.188 5±0.042 3 | 0.183 1±0.040 1 | 0.195 8±0.033 0 | 0.182 2±0.058 9 | |
CSLDSVR | 0.141 3±0.016 2 | 0.135 2±0.023 6 | 0.140 2±0.024 4 | 0.138 6±0.038 4 | 0.126 7±0.034 9 | |
Cosine↑ | AA-BP | 0.873 1±0.034 4 | 0.881 8±0.035 6 | 0.862 2±0.049 8 | 0.839 9±0.057 8 | 0.843 7±0.058 6 |
AA-KNN | 0.935 4±0.009 6 | 0.928 6±0.017 3 | 0.927 4±0.020 8 | 0.929 7±0.022 4 | 0.913 0±0.024 4 | |
LDSVR | 0.937 7±0.019 1 | 0.944 8±0.013 3 | 0.932 5±0.029 2 | 0.928 5±0.052 0 | 0.932 6±0.047 4 | |
SA-IIS | 0.940 7±0.009 3 | 0.934 4±0.016 7 | 0.920 5±0.016 0 | 0.939 5±0.020 3 | 0.924 6±0.042 5 | |
PT-BAYES | 0.798 5±0.071 3 | 0.915 6±0.006 2 | 0.915 1±0.005 3 | 0.910 4±0.006 9 | 0.909 2±0.005 7 | |
PT-SVM | 0.898 7±0.038 5 | 0.904 3±0.042 8 | 0.914 5±0.030 9 | 0.897 4±0.036 5 | 0.906 8±0.045 8 | |
CSLDSVR | 0.940 5±0.012 1 | 0.947 3±0.018 3 | 0.923 4±0.025 5 | 0.942 8±0.036 8 | 0.936 3±0.029 4 | |
Clark↓ | AA-BP | 0.468 1±0.064 8 | 0.461 3±0.099 0 | 0.517 0±0.083 8 | 0.537 1±0.110 1 | 0.542 7±0.104 6 |
AA-KNN | 0.263 1±0.020 3 | 0.282 2±0.036 7 | 0.287 3±0.047 3 | 0.261 3±0.053 5 | 0.283 2±0.053 9 | |
LDSVR | 0.272 9±0.036 4 | 0.255 7±0.021 8 | 0.287 2±0.062 6 | 0.295 6±0.092 0 | 0.281 9±0.100 8 | |
SA-IIS | 0.266 3±0.019 1 | 0.278 8±0.039 7 | 0.311 3±0.033 6 | 0.262 3±0.055 5 | 0.293 9±0.088 0 | |
PT-BAYES | 0.893 6±0.359 8 | 0.352 0±0.014 5 | 0.352 3±0.012 7 | 0.363 6±0.016 2 | 0.366 3±0.013 3 | |
PT-SVM | 0.358 0±0.070 2 | 0.348 1±0.075 8 | 0.325 3±0.065 5 | 0.350 5±0.056 1 | 0.328 7±0.098 1 | |
CSLDSVR | 0.261 6±0.032 1 | 0.246 3±0.037 6 | 0.253 9±0.041 8 | 0.248 4±0.062 6 | 0.233 4±0.061 8 | |
Canberra↓ | AA-BP | 0.717 6±0.102 8 | 0.710 4±0.152 9 | 0.810 8±0.125 6 | 0.811 8±0.169 0 | 0.831 9±0.160 2 |
AA-KNN | 0.406 6±0.029 4 | 0.429 6±0.057 3 | 0.447 5±0.070 7 | 0.398 4±0.084 9 | 0.438 0±0.083 1 | |
LDSVR | 0.432 1±0.064 3 | 0.399 8±0.039 2 | 0.469 9±0.097 7 | 0.493 5±0.129 8 | 0.464 0±0.159 8 | |
SA-IIS | 0.426 8±0.034 2 | 0.438 4±0.067 8 | 0.502 2±0.060 1 | 0.422 4±0.093 5 | 0.469 6±0.127 4 | |
PT-BAYES | 1.472 1±0.574 8 | 0.602 2±0.026 9 | 0.604 8±0.022 9 | 0.624 5±0.029 1 | 0.629 9±0.023 9 | |
PT-SVM | 0.573 6±0.106 2 | 0.541 1±0.127 7 | 0.522 7±0.111 0 | 0.551 0±0.087 4 | 0.511 5±0.165 9 | |
CSLDSVR | 0.386 3±0.047 1 | 0.387 5±0.061 7 | 0.393 8±0.069 5 | 0.402 3±0.109 2 | 0.354 4±0.093 9 | |
Intersection↑ | AA-BP | 0.776 3±0.035 6 | 0.781 6±0.045 8 | 0.752 0±0.044 6 | 0.749 4±0.053 5 | 0.745 3±0.052 9 |
AA-KNN | 0.855 9±0.011 6 | 0.846 0±0.021 1 | 0.842 1±0.026 5 | 0.857 4±0.031 3 | 0.842 8±0.029 5 | |
LDSVR | 0.849 9±0.024 3 | 0.860 0±0.012 8 | 0.837 1±0.034 4 | 0.830 6±0.053 4 | 0.839 8±0.057 0 | |
SA-IIS | 0.852 2±0.011 8 | 0.846 5±0.023 7 | 0.825 2±0.021 4 | 0.854 2±0.032 9 | 0.837 3±0.049 5 | |
PT-BAYES | 0.618 2±0.111 9 | 0.794 3±0.009 5 | 0.793 1±0.007 8 | 0.786 5±0.009 9 | 0.784 6±0.008 1 | |
PT-SVM | 0.799 5±0.041 2 | 0.811 5±0.042 3 | 0.816 9±0.040 1 | 0.804 2±0.033 0 | 0.817 8±0.058 9 | |
CSLDSVR | 0.858 7±0.041 5 | 0.864 8±0.023 6 | 0.859 8±0.024 4 | 0.861 4±0.038 4 | 0.873 3±0.034 9 | |
KL↑ | AA-BP | 0.166 7±0.042 9 | 0.161 2±0.051 7 | 0.192 0±0.069 3 | 0.222 2±0.089 8 | 0.227 9±0.076 4 |
AA-KNN | 0.068 5±0.010 1 | 0.076 0±0.018 4 | 0.076 6±0.022 1 | 0.074 6±0.023 2 | 0.093 2±0.026 6 | |
LDSVR | 0.066 5±0.019 9 | 0.059 3±0.014 6 | 0.070 3±0.032 3 | 0.074 9±0.062 5 | 0.071 1±0.049 8 | |
SA-IIS | 0.063 9±0.009 3 | 0.069 8±0.017 8 | 0.083 7±0.016 6 | 0.063 9±0.021 0 | 0.080 0±0.044 1 | |
PT-BAYES | 0.492 9±0.251 0 | 0.087 9±0.006 7 | 0.088 0±0.006 1 | 0.093 5±0.008 0 | 0.094 8±0.006 6 | |
PT-SVM | 0.108 1±0.041 2 | 0.105 5±0.047 6 | 0.090 6±0.032 9 | 0.110 4±0.040 5 | 0.100 3±0.048 1 | |
CSLDSVR | 0.060 3±0.041 5 | 0.056 7±0.019 5 | 0.069 9±0.024 0 | 0.060 1±0.046 1 | 0.068 2±0.030 1 |
数据集 | Decision Tree | KNN | CSLDSVR | |||
---|---|---|---|---|---|---|
Precision | mAP | Precision | mAP | Precision | mAP | |
NYU | 0.548 8±0.142 3 | 0.409 3±0.070 3 | 0.614 4±0.152 5 | 0.364 7±0.052 7 | 0.655 4±0.057 1 | 0.451 7±0.039 8 |
UM | 0.576 7±0.132 5 | 0.385 9±0.087 2 | 0.528 5±0.121 4 | 0.374 0±0.086 1 | 0.701 4±0.070 8 | 0.497 1±0.125 0 |
Leuven | 0.617 1±0.226 1 | 0.424 2±0.208 6 | 0.608 5±0 | 0.333 3±0 | 0.617 6±0.072 5 | 0.448 2±0.086 1 |
UCLA | 0.605 2±0.183 3 | 0.442 0±0.208 6 | 0.654 3±0 | 0.333 3±0 | 0.665 2±0.150 4 | 0.443 4±0.165 9 |
KKI | 0.559 8±0.256 7 | 0.395 4±0.294 1 | 0.646 5±0 | 0.333 3±0 | 0.687 5±0.123 7 | 0.447 6±0.101 6 |
表6 CSLDSVR和多分类算法的性能比较
Table 6 Performance comparison of CSLDSVR and multi-classification algorithms
数据集 | Decision Tree | KNN | CSLDSVR | |||
---|---|---|---|---|---|---|
Precision | mAP | Precision | mAP | Precision | mAP | |
NYU | 0.548 8±0.142 3 | 0.409 3±0.070 3 | 0.614 4±0.152 5 | 0.364 7±0.052 7 | 0.655 4±0.057 1 | 0.451 7±0.039 8 |
UM | 0.576 7±0.132 5 | 0.385 9±0.087 2 | 0.528 5±0.121 4 | 0.374 0±0.086 1 | 0.701 4±0.070 8 | 0.497 1±0.125 0 |
Leuven | 0.617 1±0.226 1 | 0.424 2±0.208 6 | 0.608 5±0 | 0.333 3±0 | 0.617 6±0.072 5 | 0.448 2±0.086 1 |
UCLA | 0.605 2±0.183 3 | 0.442 0±0.208 6 | 0.654 3±0 | 0.333 3±0 | 0.665 2±0.150 4 | 0.443 4±0.165 9 |
KKI | 0.559 8±0.256 7 | 0.395 4±0.294 1 | 0.646 5±0 | 0.333 3±0 | 0.687 5±0.123 7 | 0.447 6±0.101 6 |
[1] |
DUAN X, CHEN H, HE C, et al. Resting-state functional under-connectivity within and between large-scale cortical networks across three low-frequency bands in adolescents with autism[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79(B):434-441.
DOI URL |
[2] |
DICKIE E W, AMEIS S H, SHAHAB S, et al. Personalised intrinsic network topography mapping and functional con-nectivity deficits in autism spectrum disorder[J]. Biological Psychiatry, 2018, 84(4):278-286.
DOI URL |
[3] | WOZNIAK R H, LEEZENBAUM N B, NORTHRUP J B, et al. The development of autism spectrum disorders: varia-bility and causal complexity: development of autism spectrum disorders[J]. Wiley Interdisciplinary Reviews Cognitive Sci-ence, 2016, 8(1):27906524. |
[4] | ALI E M, AL-ADWAN F E Z, AL-NAIMAT Y M. Autism spectrum disorder (ASD); symptoms, causes, diagnosis, in-tervention, and counseling needs of the families in Jordan[J]. Modern Applied Science, 2019, 13(5):48-56. |
[5] |
MINSHEW N J, KELLER T A. The nature of brain dysfunc-tion in autism: functional brain imaging studies[J]. Current Opinion in Neurology, 2010, 23(2):124-130.
DOI URL |
[6] |
STIGLER K A, MCDONALD B C, ANAND A, et al. Struc-tural and functional magnetic resonance imaging of autism spectrum disorders[J]. Brain Research, 2011, 1380(12):146-161.
DOI URL |
[7] |
PUERTO E, AGUILAR J, LÓPEZ C, et al. Using multilayer fuzzy cognitive maps to diagnose autism spectrum disorder[J]. Applied Soft Computing, 2018, 75:58-71.
DOI URL |
[8] | LI X X, DVORNEK N C, ZHUANG J T, et al. Brain bio-marker interpretation in ASD using deep learning and fMRI[C]// LNCS 11072: Proceedings of the 21st International Con-ference on Medical Image Computing and Computer-Assisted Intervention, Granada, Sep 16-20, 2018. Cham: Springer, 2018: 206-214. |
[9] |
ECKER C, MARQUAND A, MOURAO-MIRANDA J, et al. Describing the brain in autism in five dimensions-magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach[J]. Journal of Neuroscience, 2010, 30(32):10612-10623.
DOI URL |
[10] |
WANG J, QIAN W, HAN Z, et al. Sparse multiview task-centralized ensemble learning for ASD diagnosis based on age- and sex-related functional connectivity patterns[J]. IEEE Transactions on Cybernetics, 2019, 49(8):3141-3154.
DOI URL |
[11] | 张春香, 王骏, 张嘉旭, 等. 面向自闭症辅助诊断的联合组稀疏TSK建模方法[J]. 计算机科学与探索, 2020, 14(12):2083-2093. |
ZHANG C X, WANG J, ZHANG J X, et al. Novel TSK modeling method with joint group sparse learning for au-tism aided diagnosis[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(12):2083-2093. | |
[12] | 张英, 王骏, 鲍国强, 等. 面向自闭症辅助诊断的无监督模糊特征学习新方法[J]. 智能系统学报, 2019, 14(5):882-888. |
ZHANG Y, WANG J, BAO G Q, et al. A novel unsupervised fuzzy feature learning method for computer-aided diagnosis of autism[J]. CAAI Transactions on Intelligent Systems, 2019, 14(5):882-888. | |
[13] |
CHEN X, ZHANG H, GAO Y, et al. High-order resting-state functional connectivity network for MCI classification[J]. Human Brain Mapping, 2016, 37(9):3282-3296.
DOI URL |
[14] |
AGGARWAL P, GUPTA A. Multivariate graph learning for detecting aberrant connectivity of dynamic brain networks in autism[J]. Medical Image Analysis, 2019, 56:11-25.
DOI URL |
[15] |
HEINSFELD A S, FRANCO A R, CRADDOCK R C. Iden-tification of autism spectrum disorder using deep learning and the ABIDE dataset[J]. NeuroImage: Clinical, 2018, 17:16-23.
DOI URL |
[16] | American Psychiatric Association. Diagnostic and statistical manual of mental disorders[M]. Washington: American Psy-chiatric Association, 1994. |
[17] |
FRÉNAY B, VERLEYSEN M. Classification in the presence of label noise: a survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(5):845-869.
DOI URL |
[18] |
WU F, JING X Y, SHAN S G. Multiset feature learning for highly imbalanced data classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1):139-156.
DOI URL |
[19] |
GAO B B, XING C, XIE C W, et al. Deep label distribution learning with label ambiguity[J]. IEEE Transactions on Image Processing, 2016, 26(6):2825-2838.
DOI URL |
[20] |
JIA X Y, REN T T, CHEN L, et al. Weakly supervised label distribution learning based on transductive matrix completion with sample correlations[J]. Pattern Recognition Letters, 2019, 125:453-462.
DOI URL |
[21] |
GENG X. Label distribution learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(7):1734-1748.
DOI URL |
[22] | GIBAJA E, VENTURA S. A tutorial on multilabel learning[J]. ACM Computing Surveys, 2015, 47(3):1-38. |
[23] |
ZHANG M L, ZHOU Z H. A review on multi-label learn-ing algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8):1819-1837.
DOI URL |
[24] | ZHOU D Y, ZHANG X, ZHOU Y, et al. Emotion distribu-tion learning from texts[C]// Proceedings of the 2016 Con-ference on Empirical Methods in Natural Language Process-ing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 638-647. |
[25] | GENG X, XIA Y. Head pose estimation based on multivariate label distribution[C]// Proceedings of the 2014 IEEE Confer-ence on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 1837-1842. |
[26] | XU N, TAO A, GENG X. Label enhancement for label distri-bution learning[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 2926-2932. |
[27] | SHAO R F, XU N, GENG X. Multi-label learning with label enhancement[C]// Proceedings of the 2018 IEEE Interna-tional Conference on Data Mining, Singapore, Nov 17-20, 2018. Piscataway: IEEE, 2018: 437-446. |
[28] | KLIR G J, YUAN B. Fuzzy sets and fuzzy logic-theory and applications[M]. Upper Saddle River: Prentice Hall, 1995. |
[29] |
BUDA M, MAKI A, MAZUROWSKI M A. A systematic study of the class imbalance problem in convolutional neural networks[J]. Neural Networks, 2017, 106:249-259.
DOI URL |
[30] | GENG X, HOU P. Pre-release prediction of crowd opinion on movies by label distribution learning[C]// Proceedings of the 24th International Joint Conference on Artificial Intelli-gence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 3511-3517. |
[31] | PÉREZ-CRUZ F, ALARCÓN-DIANA P L, NAVIA-VÁZQUEZ Á, et al. Fast training of support vector classi-fiers[C]// Proceedings of the Advances in Neural Informa-tion Processing Systems 13, Denver, Nov 27-Dec 2, 2000. Red Hook: Curran Associates, 2000: 734-740. |
[32] | SCHLKOPF B, SMOLA A J. Learning with kernels[M]. Cambridge: MIT Press, 2001. |
[33] | OLANOW C W, KOLLER W C. An algorithm (decision tree) for the management of Parkinson’s disease: treatment guidelines[J]. Neurology, 1998, 50(3):S1. |
[34] | LIN X T, CHEN X W. Mr.KNN: soft relevance for multi-label classification[C]// Proceedings of the 19th ACM Con-ference on Information and Knowledge Management, Tor-onto, Oct 26-30, 2010. New York: ACM, 2010: 349-358. |
[35] | THAI-NGHE N, GANTNER Z, SCHMIDT-THIEME L. Cost-sensitive learning methods for imbalanced data[C]// Proceedings of the 2010 International Joint Conference on Neural Networks, Barcelona, Jul 18-23, 2010. Piscataway: IEEE, 2010: 1-8. |
[36] |
CASTRO C L, BRAGA A P. Novel cost-sensitive approach to improve the multilayer perceptron performance on im-balanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(6):888-899.
DOI URL |
[1] | 桑庆兵,高双. 四元数小波变换的无参考图像质量评价[J]. 计算机科学与探索, 2017, 11(4): 633-642. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||