[1] |
张辉, 宋雅男, 王耀南, 等. 钢轨缺陷无损检测与评估技术综述[J]. 仪器仪表学报, 2019, 40(2):11-25.
|
|
ZHANG H, SONG Y N, WANG Y N, et al. Review of rail defect non-destructive testing and evaluation[J]. Chinese Journal of Scientific Instrument, 2019, 40(2):11-25.
|
[2] |
LI Q Y, ZHONG Z D, LIANG Z P, et al. Rail inspection meets big data: methods and trends[C]// Proceedings of the 18th International Conference on Network-Based Information Systems, Taiwan, China, Sep 2-4, 2015. Washington: IEEE Computer Society, 2015: 302-308.
|
[3] |
ZHANG H, JIN X T, JONATHAN Q M, et al. Automatic visual detection system of railway surface defects with curvature filter and improved Gaussian mixture model[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(7):1593-1608.
DOI
URL
|
[4] |
金侠挺, 王耀南, 张辉, 等. 基于贝叶斯CNN和注意力网络的钢轨表面缺陷检测系统[J]. 自动化学报, 2019, 45(12):2312-2327.
|
|
JIN X T, WANG Y N, ZHANG H, et al. DeepRail: automatic visual detection system for railway surface defect using Bayesian CNN and attention network[J]. Acta Automatica Sinica, 2019, 45(12):2312-2327.
|
[5] |
YU H M, LI Q Y, TAN Y Q, et al. A coarse-to-fine model for rail surface defect detection[J]. IEEE Transactions on Instrumentation & Measurement, 2019, 68(3):656-666.
|
[6] |
唐湘娜, 王耀南. 铁轨表面缺陷的视觉检测与识别算法[J]. 计算机工程, 2013, 39(3):25-30.
|
|
TANG X N, WANG Y N. Visual inspection and classification algorithm of rail surface defect[J]. Computer Engineering, 2013, 39(3):25-30.
|
[7] |
王耀南, 尹逊帅, 贺振东, 等. 钢轨表面图像冗余信息的模糊匹配算法[J]. 湖南大学学报(自然科学版), 2016, 43(4):75-80.
|
|
WANG Y N, YIN X S, HE Z D, et al. Algorithm of fuzzy matching for redundancies of rail surface images[J]. Journal of Hunan University (Natural Sciences), 2016, 43(4):75-80.
|
[8] |
LI Q Y, REN S W. A real-time visual inspection system for discrete surface defects of rail heads[J]. IEEE Transactions on Instrumentation & Measurement, 2012, 61(8):2189-2199.
|
[9] |
WU Y P, LI Q Y, JIA L M. Research on rail surface defect detection method based on UAV images[C]// Proceedings of the 2018 Prognostics and System Health Management Con-ference, Chongqing, Oct 26-28, 2018. Piscataway: IEEE, 2018: 553-558.
|
[10] |
周咏. 基于图像处理的钢轨表面缺陷识别研究[D]. 兰州: 兰州交通大学, 2018.
|
|
ZHOU Y. Research on the defect recognition for rail surface based on image processing[D]. Lanzhou: Lanzhou Jiaotong University, 2018.
|
[11] |
贺振东, 王耀南, 刘洁, 等. 基于背景差分的高铁钢轨表面缺陷图像分割[J]. 仪器仪表学报, 2016, 37(3):640-649.
|
|
HE Z D, WANG Y N, LIU J, et al. Background differencing-based high-speed rail surface defect image segmentation[J]. Chinese Journal of Scientific Instrument, 2016, 37(3):640-649.
|
[12] |
MIN Y Z, XIAO B Y, DANG J W, et al. Real time detection system for rail surface defects based on machine vision[J]. EURASIP Journal on Image and Video Processing, 2018, 1:3.
|
[13] |
顾桂梅, 李晓梅, 常海涛, 等. 基于HSV空间的钢轨表面区域快速提取算法[J]. 云南大学学报(自然科学版), 2019, 41(4):707-717.
|
|
GU G M, LI X M, CHANG H T, et al. Fast extraction agori-thm for rail surface region based on HSV space[J]. Journal of Yunnan University (Natural Sciences Edition), 2019, 41(4):707-717.
|
[14] |
PREMA C E, VINSLEY S S, SURESH S. Multi feature analysis of smoke in YUV color space for early forest fire detection[J]. Fire Technology, 2016, 52(5):1319-1342.
DOI
URL
|
[15] |
LIU J H, ZHONG X. An object tracking method based on mean shift algorithm with HSV color space and texture features[J]. Cluster Computing, 2019, 22(3):6079-6090.
DOI
URL
|
[16] |
SUN Y H, MU Y, QIN F, et al. Deer body adaptive threshold segmentation algorithm based on color space[J]. Computers, Materials and Continua, 2020, 64(2):1317-1328.
DOI
URL
|
[17] |
YANG Y G, ZOU L, ZHOU Y H, et al. Visually meaningful encryption for color images by using Qi hyper-chaotic system and singular value decomposition in YCbCr color space[J]. International Journal for Light and Electron Optics, 2020, 213:164422.
DOI
URL
|
[18] |
WEI X J, YE P X. Efficiency of orthogonal super greedy algorithm under the restricted isometry property[J]. Journal of Inequalities and Applications, 2019(1):124.
|
[19] |
郅惠博, 李洪涛, 张含露. 国内外铁路用钢轨标准对比分析研究[J]. 科技视界, 2019, 32:1-6.
|
|
ZHI H B, LI H T, ZHANG H L. Comparative analysis and research on railway rail standards at home and abroad[J]. Science & Technology Vision, 2019, 32:1-6.
|
[20] |
GIRSHICK R B. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1440-1448.
|