[1] LI X, ZHAO Y, ZHOU X F, et al. Consensus-based group task assignment with social impact in spatial crowdsourcing[J]. Data Science and Engineering, 2020, 5(4): 375-390.
[2] CUI L Z, CHEN J, HE W, et al. Achieving approximate glo-bal optimization of truth inference for crowdsourcing micro-tasks[J]. Data Science and Engineering, 2021, 6(3): 294-309.
[3] YUAN H T, LI G L. A survey of traffic prediction: from spatio-temporal data to intelligent transportation[J]. Data Science and Engineering, 2021, 6(1): 63-85.
[4] DUCHI J C, JORDAN M I, WAINWRIGHT M J. Local privacy and statistical minimax rates[C]//Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, Berkeley, Oct 26-29, 2013. Piscataway: IEEE, 2013: 429-438.
[5] TAKURTAA G, VYRROS A H, VAISHAMPAYAN U S, et al. Emoji frequency detection and deep link frequency:US20190068628[P/OL]. (2017-02-28)[2021-06-12]. https://www.freepatet-sonline.com/y2019/0068628.html.
[6] DING B, KULKARNI J, YEKHANIN S. Collecting telemetry data privately[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 3571-3580.
[7] YE Q Q, HU H B, MENG X F, et al. PrivKV: key-value data collection with local differential privacy[C]//Procee-dings of the 2019 IEEE Symposium on Security and Privacy, San Francisco, May 19-23, 2019. Piscataway: IEEE, 2019: 317-331.
[8] WANG T H, LI N H, JHA S. Locally differentially private frequent itemset mining[C]//Proceedings of the 2018 IEEE Symposium on Security and Privacy, San Francisco, May 21-23, 2018. Washington: IEEE Computer Society, 2018: 127-143.
[9] CHEN R, LI H R, QIN A K, et al. Private spatial data aggre-gation in the local setting[C]//Proceedings of the 32nd IEEE International Conference on Data Engineering, Helsinki, May 16-20, 2016. Washington: IEEE Computer Society, 2016: 289-300.
[10] WANG S W, HUANG L S, TIAN M M, et al. Personalized privacy-preserving data aggregation for histogram estima-tion[C]//Proceedings of the 2015 IEEE Global Communi-cations Conference, San Diego, Dec 6-10, 2015. Piscataway: IEEE, 2015: 1-6.
[11] NIE Y W, YANG W, HUANG L S, et al. A utility-optimized framework for personalized private histogram estimation[J].IEEE Transactions on Knowledge and Data Engineering, 2019, 31(4): 655-669.
[12] SHEN Z X, XIA Z H, YU P P. PLDP: personalized local differential privacy for multidimensional data aggregation[J]. Security and Communication Networks, 2021, 4: 1-13.
[13] DWORK C. Differential privacy[C]//LNCS 4052: Proceedings of the 33rd International Colloquium on Automata, Langua-ges and Programming, Venice, Jul 10-14, 2006. Berlin, Hei-delberg: Springer, 2006: 1-12.
[14] KASIVISWANATHAN S P, LEE H K, NISSIM K, et al. What can we learn privately?[C]//Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, Oct 25-28, 2008. Washington: IEEE Computer Society, 2008: 531-540.
[15] WARNER S L. Randomized response: a survey technique for eliminating evasive answer bias[J]. Journal of the Ame-rican Statistical Association, 1965, 60(309): 63-69.
[16] ERLINGSSON ú, PIHUR V, KOROLOVA A. RAPPOR: ran-domized aggregatable privacy-preserving ordinal response[C]//Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, Nov 3-7, 2014. New York: ACM, 2014: 1054-1067.
[17] WANG T H, BLOCKI J, LI N H, et al. Locally differen-tially private protocols for frequency estimation[C]//Procee-dings of the 26th USENIX Security Symposium, Vancouver, Aug 16-18, 2017. Berkeley: USENIX Association, 2017: 729-745.
[18] BASSILY R, SMITH A D. Local, private, efficient protocols for succinct histograms[C]//Proceedings of the 47th Annual ACM on Symposium on Theory of Computing, Portland, Jun 14-17, 2015. New York: ACM, 2015: 127-135.
[19] DWORK C, McSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis[C]//LNCS 3876: Proceedings of the 3rd Conference on Theory of Crypto-graphy, New York, Mar 4-7, 2006. Berlin, Heidelberg: Sprin-ger, 2006: 265-284.
[20] DUCHI J C, JORDANM I, WAINWRIGHTM J. Minimax optimal procedures for locally private estimation[J]. Journal of the American Statistical Association, 2018, 113(521): 182-201.
[21] WANG N, XIAO X K, YANG Y, et al. Collecting and analy-zing multidimensional data with local differential privacy[C]//Proceedings of the 35th IEEE International Conference on Data Engineering, Macao, China, Apr 8-11, 2019. Piscata-way: IEEE, 2019: 638-649. |