[1] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequ-ence learning with neural networks[J]. arXiv:1409.3215, 2014.
[2] ZHOU H, HUANG M, ZHANG T, et al. Emotional chat-ting machine: emotional conversation generation with inter-nal and external memory[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelli-gence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 730-738.
[3] SHANTALA R, KYSELOV G, KYSELOVA A. Neural dia-logue system with emotion embeddings[C]//Proceedings of the 2018 IEEE 1st International Conference on System Anal-ysis & Intelligent Computing, Kyiv, Oct 8-12, 2018. Pisca-taway: IEEE, 2018: 1-4.
[4] HUANG C, ZAIANE O R, TRABELSI A, et al. Automatic dialogue generation with expressed emotions[C]//Procee-dings of the 2018 Conference of the North American Cha-pter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Strou-dsburg: ACL, 2018: 49-54.
[5] ZHANG R, WANG Z, MAI D. Building emotional convers-ation systems using multi-task Seq2Seq learning[C]//LNCS 10619: Proceedings of the 6th CCF Conference on Natural Language Processing and Chinese Computing, Dalian, Nov 8-12, 2017. Cham: Springer, 2017: 612-621.
[6] SONG Z, ZHENG X, LIU L, et al. Generating responses with a specific emotion in dialog[C]//Proceedings of the 57th Conference of the Association for Computational Lin-guistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 3685-3695.
[7] XU W, GU X, CHEN G. Generating emotional controllable response based on multi-task and dual attention framework[J]. IEEE Access, 2019, 7: 93734-93741.
[8] KONG X, LI B, NEUBIG G, et al. An adversarial approach to high-quality, sentiment-controlled neural dialogue gene-ration[J]. arXiv:1901.07129, 2019.
[9] PENG D, ZHOU M, LIU C, et al. Human-machine dialogue modelling with the fusion of word-and sentence-level emot-ions[J]. Knowledge-Based Systems, 2020, 192: 105319.
[10] MA Z, YANG R, DU B, et al. A control unit for emotional conversation generation[J]. IEEE Access, 2020, 8: 43168-43176.
[11] SHEN L, FENG Y. CDL: curriculum dual learning for emotion-controllable response generation[C]//Proceedings of the 58th Annual Meeting of the Association for Compu-tational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 556-566.
[12] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI Blog, 2019, 1(8): 9.
[13] VINYALS O, LE Q. A neural conversational model[J]. arXiv:1506.05869, 2015.
[14] CHO K, VAN MERRI?NBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv:1406.1078, 2014.
[15] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008.
[16] ZHANG Y, SUN S, GALLEY M, et al. DIALOGPT: large-scale generative pretraining for conversational response gene-ration[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demon-strations, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 270-278.
[17] LI X, LI P, BI W, et al. Relevance-promoting language model for short-text conversation[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Confer-ence, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 8253-8260.
[18] OLUWATOBI O, MUELLER E. DLGNet: a transformer-based model for dialogue response generation[J]. arXiv:1908.01841, 2019.
[19] HOLTZMAN A, BUYS J, DU L, et al. The curious case of neural text degeneration[J]. arXiv:1904.09751, 2019.
[20] LI J T, YAN R. Overview of the NLPCC 2018 shared task: multi-turn human-computer conversations[C]//LNCS 11109: Proceedings of the 7th CCF International Conference on Natural Language Processing and Chinese Computing, Hohhot, Aug 26-30, 2018. Cham: Springer, 2018: 446-451.
[21] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Compu-tational Linguistics: Human Language Technologies, Min-neapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186.
[22] SERBAN I V, SORDONI A, BENGIO Y, et al. Building end-to-end dialogue systems using generative hierarchical neural network models[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 3776-3784.
[23] SERBAN I V, SORDONI A, LOWE R, et al. A hierarchical latent variable encoder-decoder model for generating dialo-gues[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 3295-3301.
[24] LIN C Y. ROUGE: a package for automatic evaluation of summaries[C]//Proceedings of the 2004 Workshop on Text Summarization of ACL, Barcelona, Jul 21-26, 2004. Stroud-sburg: ACL, 2004: 74-81.
[25] WIETING J, BANSAL M, GIMPEL K, et al. Towards universal paraphrastic sentence embeddings[J]. arXiv:1511.08198, 2015.
[26] RUS V, LINTEAN M. An optimal assessment of natural language student input using word-to-word similarity met-rics[C]//LNCS 7315: Proceedings of the 11th International Conference on Intelligent Tutoring Systems, Crete, Jun 14-18, 2012. Berlin, Heidelberg: Springer, 2012: 675-676.
[27] FORGUES G, PINEAU J, LARCHEVêQUE J M, et al. Bootstrapping dialog systems with word embeddings[C]// Proceedings of the NIPS, Modern Machine Learning and Natural Language Processing Workshop, Montreal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 2.
[28] RONG X. word2vec parameter learning explained[J]. arXiv:1411.2738, 2014.
[29] LI J, GALLEY M, BROCKETT C, et al. A diversity-promoting objective function for neural conversation models[C]//Proceedings of the 2016 Conference of the North Ame-rican Chapter of the Association for Computational Lingui-stics: Human Language Technologies, San Diego, Jun 12-17, 2016. Stroudsburg: ACL, 2016: 110-119. |