[1] IMANI M, GHASSEMIAN H. An overview on spectral and spatial information fusion for hyperspectral image classifi-cation: current trends and challenges[J]. Information Fusion, 2020, 59: 59-83.
[2] NAOTO Y, JONATHAN C, KARL S. Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images[J]. Remote Sensing, 2016, 8(3): 172.
[3] LIANG L, DI L, ZHANG L, et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inver-sion method[J]. Remote Sensing of Environment, 2015, 165: 123-134.
[4] 谭海峰, 罗天文, 杨桄, 等. 高光谱异常检测中背景抑制方法研究[J]. 光电子·激光, 2016, 27(2): 177-181.
TAN H F, LUO T W, YANG G, et al. Research on back-ground suppression methods in hyperspectral anomaly detec-tion[J]. Journal of Optoelectronics·Laser, 2016, 27(2): 177-181.
[5] CAPORASO N, WHITWORTH M B, GREBBY S, et al. Non-destructive analysis of sucrose, caffeine and trigonel-line on single green coffee beans by hyperspectral imaging[J]. Food Research International, 2018, 106: 193-203.
[6] ZHANG X, WANG Y, ZHANG N, et al. SSDANet: spectral-spatial three-dimensional convolutional neural network for hyperspectral image classification[J]. IEEE Access, 2020, 8: 127167-127180.
[7] LAI H, DENG J, WEN S. Application of ToF-SIMS and PCA to study interaction mechanism of dodecylamine and smithsonite[J]. Applied Surface Science, 2019, 496: 143698.
[8] HAJER N, RAOUDHA B D, IKRAM AMOUS B A. Effi-cient cloud service discovery approach based on LDA topic modeling[J]. Journal of Systems and Software, 2018, 146: 233-248.
[9] LI Z M, ZHANG J, HUANG H, et al. Semi-supervised bun-dle manifold learning for hyperspectral image classification[J]. Optics and Precision Engineering, 2015, 23(5): 1434-1442.
[10] HE L, LI J, PLAZA A, et al. Discriminative low-rank Gabor filtering for spectral-spatial hyperspectral image classifica-tion[J]. IEEE Transactions on Geoscience and Remote Sen-sing, 2017, 55(3): 1381-1395.
[11] HONG D, WU X, GHAMISI P, et al. Invariant attribute profiles: a spatial-frequency joint feature extractor for hyper-spectral image classification[J]. IEEE Transactions on Geo-science and Remote Sensing, 2020, 58(6): 3791-3808.
[12] CAO X, XU L, MENG D, et al. Integration of 3-dimen-sional discrete wavelet transform and Markov random field for hyperspectral image classification[J]. Neurocomputing, 2017, 226(22): 90-100.
[13] ?ZDEMIR O B, GEDIK E, ?ETIN Y Y. Hyperspectral classification using stacked autoencoders with deep learning[C]//Proceedings of the 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Lausanne, Jun 24-27, 2014. Piscataway: IEEE, 2014: 1-4.
[14] ZHAO X, CHEN Y S, JIA X P. Spectral-spatial classifica-tion of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observa-tions and Remote Sensing, 2015, 8(6): 2381-2392.
[15] HU W, HUANG Y Y, LI W, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015: 258619.
[16] YAO W, LIAN C, BRUZZONE L. ClusterCNN: clustering-based feature learning for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters,?2021, 18(11): 1991-1995.
[17] 魏祥坡, 余旭初, 谭熊, 等. CNN和三维Gabor滤波器的高光谱图像分类[J]. 计算机辅助设计与图形学学报, 2020, 32(1): 90-98.
WEI X P, YU X C, TAN X, et al. Convolutional neural networks and 3D Gabor filtering for hyperspectral image classification[J]. Journal of Computer-Aided Design & Com-puter Graphics, 2020, 32(1): 90-98.
[18] HAMIDA A B, BENOIT A, LAMBERT P, et al. 3-D deep learning approach for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4420-4434.
[19] ZHANG C J, LI G D, DU S H. Multi-scale dense networks for hyperspectral remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9201-9222.
[20] LU Z, XU B, SUN L, et al. 3D channel and spatial attention based multi-scale spatial spectral residual network for hyper-spectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4311-4324.
[21] SUN H, ZHENG X T, LU X Q, et al. Spectral-spatial atten-tion network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3232-3245.
[22] FANG B, LI Y, ZHANG H, et al. Hyperspectral images clas-sification based on dense convolutional networks with spectral-wise attention mechanism[J]. Remote Sensing, 2019, 11(2): 159.
[23] LAHDHIRI H, TAOUALI O. Reduced rank KPCA based on GLRT chart for sensor fault detection in nonlinear che-mical process[J]. Measurement, 2021, 169: 108342.
[24] 修瑛昌, 杨文静. Mini Batch K-means算法在遥感影像分类中的应用[J]. 鲁东大学学报(自然科学版), 2017, 33(4): 359-363.
XIU Y C, YANG W J. Application of Mini Batch K-means algorithm in remote sensing data classification[J]. Ludong University Journal (Natural Science Edition), 2017, 33(4): 359-363.
[25] ROY S K, KRISHNA G, DUBEY S R, et al. HybridSN: exploring 3D-2D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2): 277-281.
[26] ZHONG Z L, LI J, LUO Z M, at al. Spectral-spatial resi-dual network for hyperspectral image classification: a 3-D deep learning framework[J]. IEEE Transactions on Geosci-ence and Remote Sensing, 2018, 56(2): 847-858.
[27] MUHAMMAD A. A fast 3D CNN for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Let-ters, 2020, 19: 5502205. |