[1] FLORES C F, GONZALEZ-GARCIA A, VAN DE WEIJER J, et al. Saliency for fine-grained object recognition in domains with scarce training data[J]. Pattern Recognition, 2019, 94: 62-73.
[2] WEI Y C, FENG J S, LIANG X D, et al. Object region mining with adversarial erasing: a simple classification to semantic segmentation approach[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6488-6496.
[3] REN Z, GAO S, CHIA L T, et al. Region-based saliency detection and its application in object recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 24(5): 769-779.
[4] LIANG P, PANG Y, LIAO C, et al. Adaptive objectness for object tracking[J]. IEEE Signal Processing Letters, 2016, 23(7): 949-953.
[5] 史彩娟, 张卫明, 陈厚儒, 等. 基于深度学习的显著性目标检测综述[J]. 计算机科学与探索, 2021, 15(2): 219-232.
SHI C J, ZHANG W M, CHEN H R, et al. Survey of salient object detection based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2): 219-232.
[6] LONG J, SHELLHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 3431-3440.
[7] RONNEBERGER O, FICHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241.
[8] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[9] ZHANG J, DAI Y C, PORIKLI F, et al. Multi-scale salient object detection with pyramid spatial pooling[C]//Preceedings of the 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Kuala Lumpur, Dec 12-15, 2017. Piscataway: IEEE, 2017: 1286-1291.
[10] 张守东, 杨明, 胡太. 基于多特征融合的显著性目标检测算法[J]. 计算机科学与探索, 2019, 13(5): 834-845.
ZHANG S D, YANG M, HU T. Salient object algorithm based on multi-feature fusion[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(5): 834-845.
[11] LIU J J, HOU Q B, CHENG M M, et al. A simple pooling-based design for real-time salient object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3917-3926.
[12] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7132-7141.
[13] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[14] ZHAO T, WU X Q. Pyramid feature attention network for saliency detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3085-3094.
[15] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13713-13722.
[16] ZHOU H J, XIE X H, LAI J H, et al. Interactive two-stream decoder for accurate and fast saliency detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 9141-9150.
[17] SU J M, LI J, XIA C Q, et al. Selectivity or invariance: boundary-aware salient object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 3798-3807.
[18] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[19] SHI J P, YAN Q, XU L, et al. Hierarchical image saliency detection on extended CSSD[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 717-729.
[20] LI Y, HOU X D, KOCH C, et al. The secrets of salient object segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 280-287.
[21] LI G B, YU Y Z. Deep contrast learning for salient object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 478-487.
[22] WANG L Y, LU H C, WANG Y F, et al. Learning to detect salient objects with image-level supervision[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 3796-3805.
[23] YANG C, ZHANG L H, LU H C, et al. Saliency detection via graph-based manifold ranking[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, Jun 23-28, 2013. Washington: IEEE Computer Society, 2013: 3166-3173.
[24] EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136.
[25] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-25, 2009. Washington: IEEE Computer Society, 2009: 248-255.
[26] XIAO J X, HAYS J, EHINGER K A, et al. SUN database: large-scale scene recognition from abbey to zoo[C]//Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, Jun 13-18, 2010. Washington: IEEE Computer Society, 2010: 3485-3492.
[27] WU Q, WANG J Z, CHAI Z L, et al. Multi-scale feature aggregation and boundary awareness network for salient object detection[J]. Image and Vision Computing, 2022, 122: 104442.
[28] FAN D P, CHENG M M, LIU Y, et al. Structure-measure: a new way to evaluate foreground maps[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 4558-4567.
[29] FAN D P, GONG C G, CAO Y, et al. Enhanced-alignment measure for binary foreground map evaluation[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 698-704.
[30] CHEN S H, TAN X L, WANG B, et al. Reverse attention for salient object detection[C]//LNCS 11213: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 236-252.
[31] DENG Z J, HU X W, ZHU L, et al. R3net: recurrent residual refinement network for saliency detection[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018. Amsterdam: Elsevier, 2018: 684-690.
[32] WANG W G, SHEN J B, CHENG M M, et al. An iterative and cooperative top-down and bottom-up inference network for salient object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5968-5977.
[33] FENG M Y, LU H C, DING E R. Attentive feedback network for boundary-aware salient object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1623-1632.
[34] WU Z, SU L, HUANG Q M. Cascaded partial decoder for fast and accurate salient object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3907-3916.
[35] CHEN Z Y, XU Q Q, CONG R M, et al. Global context-aware progressive aggregation network for salient object detection[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 10599-10606.
[36] ZHAO X Q, PANG Y W, ZHANG L H, et al. Suppress and balance: a simple gated network for salient object detection [C]//LNCS 12347: Proceeding of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 35-51.
[37] PANG Y W, ZHAO X Q, ZHANG L H, et al. Multi-scale interactive network for salient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Menlo Park: AAAI, 2020: 9410-9419.
|