[1] 杨化超. 图像局部不变性特征及其匹配问题研究与应用[M]. 北京:测绘出版社, 2013.
YANG H C. Research and application of local invariant image features and matching problems[M]. Beijing: Surveying and Mapping?Publishing?House, 2013.
[2] NISTéR D, STEWéNIUS H. Scalable recognition with a vocabulary tree[C]//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recog-nition, New York, Jun 17-22, 2006. Washington: IEEE Computer Society, 2006: 2161-2168.
[3] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Under-standing, 2008, 110(3): 346-359.
[4] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of the 2011 International Conference on Computer vision, Barce- lona, Nov 6-13, 2011. Washington: IEEE Computer Society, 2011: 2564-2571.
[5] LEUTENEGGER S, CHLI M, SIEGWART R Y. BRISK: binary robust invariant scalable keypoints[C]//Proceedings of the 2011 International Conference on Computer Vision,Barcelona, Nov 6-13, 2011. Washington: IEEE Computer Society, 2011: 2548-2555.
[6] CHOI S G, HAN S W. New binary descriptors based on BRISK sampling pattern for image retrieval[C]//Proceedings of the 2014 International Conference on Information and Communication Technology Convergence, Busan, Oct 22-24, 2014. Washington: IEEE Computer Society, 2014: 575-576.
[7] DANG Q B, LE V P, LUQMAN M M, et al. Camera-based document image retrieval system using local features - comparing SRIF with LLAH, SIFT, SURF and ORB[C]//Proceedings of the 2015 13th International Conference on Document Analysis and Recognition, Tunis, Aug 23-26, 2015. Washington: IEEE Computer Society, 2015: 1211-1215.
[8] YI K M, TRULLS E, LEPETIT V, et al. Lift: learned invariant feature transform[C]//LNCS 9910: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-16, 2016. Cham: Springer, 2016: 467-483.
[9] ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks[C]//Pro-ceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015.Washington: IEEE Computer Society, 2015: 4353-4361.
[10] GORDO A, ALMAZAN J, REVAUD J, et al. Deep image retrieval: learning global representations for image search[C]//LNCS 9910: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-16, 2016. Cham: Springer, 2016: 241-257.
[11] 洪睿, 康晓东, 李博, 等. 动态匹配核函数图像检索[J]. 中国图象图形学报, 2018, 23(12): 1874-1885.
HONG R, KANG X D, LI B, et al. Application of dynamic match kernel in image retrieval[J]. Journal of Image and Graphics, 2018, 23(12): 1874-1885.
[12] 周书仁, 谢盈, 蔡碧野. 融合多尺度特征的深度哈希图像检索方法[J]. 计算机科学与探索, 2018, 12(12): 1974-1986.
ZHOU S R, XIE Y, CAI B Y. Deep Hashing method for image retrieval based on multi-scale features[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(12): 1974-1986.
[13] NOH H, ARAUJO A, SIM J, et al. Large-scale image retrieval with attentive deep local features[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 3456-3465.
[14] YANG T Y, KIEN NGUYEN D, HEIJNEN H, et al. DAME WEB: dynamic mean with whitening ensemble binarization for landmark retrieval without human annotation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Oct 27-28, 2019. Piscataway: IEEE, 2019: 2913-2922.
[15] RADENOVIC F, TOLIAS G, CHUM O. Fine-tuning CNN image retrieval with no human annotation[J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2019, 41(7): 1655-1668.
[16] WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6450-6458.
[17] LIU T, YU S, XU B, et al. Recurrent networks with attention and convolutional networks for sentence representation and classification[J].?Applied Intelligence, 2018,?48(10): 3797-3806.
[18] OUYANG D, ZHANG Y, SHAO J. Video-based person re-identification via spatio-temporal attentional and two-stream fusion convolutional networks[J].?Pattern Recognition Letters, 2019,?117: 153-160.
[19] ZHAN H, SH B, KOT A C. Cross-domain shoe retrieval with a semantic hierarchy of attribute classification network[J].?IEEE Transactions on Image Processing,?2017, 26(12): 5867-5881.
[20] XU J, SHI C Z, QI C Z, et al. Unsupervised part-based weighting aggregation of deep convolutional features for image retrieval[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 7436-7443.
[21] FURUTA R, INOUE N, YAMASAKI T. Efficient and interactive spatial-semantic image retrieval[J].?Multimedia Tools and Applications,?2019, 78(13): 18713-18733.
[22] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Ttransactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[23] RAGURAM R, CHUM O, POLLEFEYS M, et al. USAC: a universal framework for random sample consensus[J].?IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,?35(8): 2022-2038.
[24] YOSINSK J, CLUNE J, NGUYEN A, et al. Understanding neural networks through deep visualization[J]. arXiv:1506. 06579, 2015.
[25] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[26] BUDDEMEIER U, NEVEN H. Systems and methods for descriptor vector computation: U.S. Patent 8098938[P]. 2012-01-17.
[27] DUSMANU M, ROCCO I, PAJDLA T, et al. D2-Net: a trainable CNN for joint description and detection of local features[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach,Jun 16-20, 2019. Washington: IEEE Computer Society, 2019: 8092-8101.
[28] PHILBIN J, CHUM O, ISARD M, et al. Object retrieval with large vocabularies and fast spatial matching[C]//Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Jun 17-22, 2007. Washington: IEEE Computer Society, 2007: 1-8.
[29] PHILBIN J, CHUM O, ISARD M, et al. Lost in quantization: improving particular object retrieval in large scale image databases[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Jun 23-28, 2008. Washington: IEEE Computer Society, 2008: 1-8.
[30] ZHENG Y T, ZHAO M, SONG Y, et al. Tour the world: building a web-scale landmark recognition engine[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-25, 2009.Washington: IEEE Computer Society, 2009: 1085-1092.
|