[1] ZHANG L, WANG X D, LI H S, et al. Structure-feature based graph self-adaptive pooling[C]//Proceedings of the Web Con-ference 2020, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 3098-3104.
[2] ZHANG Z, BU J J, MARTIN E, et al. Hierarchical graph pooling with structure learning[J]. arXiv:1911.05954, 2019.
[3] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral net-works and locally connected networks on graphs[C]//Procee-dings of the 2nd International Conference on Learning Representations, Banff, Apr 14-16, 2014: 1-14.
[4] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast loca-lized spectral fifiltering[C]//Proceedings of the 30th Inter-national Conference on Neural Information Processing Sys-tems, Dec 5-10, 2016. Red Hook: Curran Associates, 2016:3844-3852.
[5] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-14.
[6] GILMER J, SCHOENHOLZ S S, Riley P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 1263-1272.
[7] HAMILTON W L, YING Z T, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 1024-1034.
[8] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 2018 Interna-tional Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018: 1-12.
[9] XU K, HU W H, LESKOVEC J, et al. How powerful are graph neural networks?[C]//Proceedings of the 7th Interna-tional Conference on Learning Representations, New Orleans, May 6-9, 2019: 1-17.
[10] YING Z T, YOU J X, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling[C]//Procee-dings of the Annual Conference on Neural Information Pro-cessing Systems 2018, Montréal, Dec 3-8, 2018. Red Hook: Curran Associates, 2018: 4805-4815.
[11] MA Y, WANG S H, AGGARWAL C C, et al. Graph convo-lutional networks with EigenPooling[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowle-dge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 723-731.
[12] YUAN H, JI S W. StructPool: structured graph pooling via conditional random fields[C]//Proceedings of the 8th Inter-national Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020: 1-12.
[13] GAO H Y, JI S W. Graph U-Nets[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 2083-2092.
[14] LEE J, LEE I, KANG J. Self-attention graph pooling[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 3734-3743.
[15] CHENG J P, DONG L, LAPATA M. Long short-term memory-networks for machine reading[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Pro-cessing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 551-561.
[16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008.
[17] BORGWARDT K M, ONG C S, SCH?NAUER S, et al. Protein function prediction via graph kernels[C]//Procee-dings of the 13th International Conference on Intelligent Systems for Molecular Biology 2005, Detroit, Jun 25-29, 2005: 47-56.
[18] SHERVASHIDZE N, SCHWEITZER P, LEEUWEN E J, et al. Weisfeiler-Lehman graph kernels[J]. Journal of Machine Learning Research, 2011, 12: 2539-2561.
[19] LI W, WANG G G, GANDOMI A H. A survey of learning-based intelligent optimization algorithms[J]. Archives of Com-putational Methods in Engineering, 2021, 28(5): 3781-3799.
[20] WANG G G, GANDOMI A H, ALAVI A H, et al. A com-prehensive review of krill herd algorithm: variants, hybrids and applications[J]. Artificial Intelligence Review, 2019, 51(1): 119-148.
[21] WANG G G, SUASH D, CUI Z H. Monarch butterfly opti-mization[J]. Neural Computing and Applications, 2019, 31(7): 1995-2014.
[22] WANG G G, DEB S, COELHO L D S. Earthworm opti-misation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems[J]. International Journal of Bio-Inspired Computation, 2018, 12(1): 1-22.
[23] WANG G G. Moth search algorithm: a bio-inspired meta-heuristic algorithm for global optimization problems[J]. Meme-tic Computing, 2018, 10(2): 151-164.
|