[1] AKASOFU S I. The development of the auroral substorm[J]. Planetary and Space Science, 1964, 12(4): 273-282.
[2] LI L Y, CAO J B, ZHOU G C, et al. Statistical roles of storms and substorms in changing the entire outer zone relativistic electron population[J]. Journal of Geophysical Research: Space Physics, 2009, 114: A12214.
[3] FREY H U, MENDE S B, VO H B, et al. Conjugate obser-vation of optical aurora with polar satellite and ground-based cameras[J]. Advances in Space Research, 1999, 23(10): 1647-1652.
[4] BRITTNACHER M, SPANN J, PARKS G, et al. Auroral observations by the polar ultraviolet imager (UVI)[J]. Ad-vances in Space Research, 1997, 20(4/5): 1037-1042.
[5] MENDE S B, HEETDERKS H, FREY H U, et al. Far ultra-violet imaging from the IMAGE spacecraft. 1. System design[J]. Space Science Reviews, 2000, 91(1): 243-270.
[6] LIOU K, MENG C I, LUI T Y, et al. On relative timing in substorm onset signatures[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A10): 22807-22817.
[7] FREY H U, MENDE S B. Substorm onsets as observed by IMAGE-FUV[C]//Proceedings of the 8th International Con-ference on Substorms, Calgary, Mar 27-31, 2006: 71-75.
[8] LIOU K. Polar ultraviolet imager observation of auroral brea-kup[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A12): A12219.
[9] VENNERSTR?M S, FRIIS-CHRISTENSEN E, TROSHICHEV O A, et al. Comparison between the polar cap index, PC, and the auroral electrojet indices AE, AL, and AU[J]. Journal of Geophysical Research: Space Physics, 1991, 96(A1): 101-113.
[10] WEYGAND J M, MCPHERRON R L, KAURIISTIE K. et al. Relation of auroral substorm onset to local AL index and dispersion less particle injections[J]. Journal of Atmosph-eric and Solar-Terrestrial Physics, 2008, 70(18): 2336-2345.
[11] 杨秋菊, 梁继民, 刘俊明, 等. 一种基于紫外极光图像的亚暴膨胀期起始时刻的自动检测方法[J]. 地球物理学报, 2013, 56(5): 1435-1447.
YANG Q Q, LIANG J M, LIU J M, et al. A method for automatic identification of substorm expansion phase onset from UVI images[J]. Chinese Journal of Geophysics, 2013, 56(5): 1435-1447.
[12] YANG X, GAO X B, TAO D, et al. Shape-constrained sparse and low-rank decomposition for auroral substorm detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 27(1): 32-46.
[13] 王向军, 蔡方方, 刘峰, 等. 非接触动态实时视线跟踪技术[J]. 计算机科学与探索, 2015, 9(3): 266-278.
WANG X J, CAI F F, LIU F, et al. Non-contact dynamic real-time eye tracking technology[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(3): 266-278.
[14] PASHIN A B, BAUMJOHANN W, RASPOPOV O M, et al. Pi2 magnetic pulsations, auroral break-ups, and the subs-torm current wedge: a case study[J]. Journal of Geophysics, 1982, 51(1): 223-233.
[15] LESTER M, HUGHES W J, SINGER H J. Longitudinal structure in Pi2 pulsations and the substorm current wedge[J]. Journal of Geophysical Research: Space Physics, 1984, 89(A7): 5489-5494.
[16] NEWELL P T, GJERLOEY J W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A12): A12211.
[17] ?STGAARDS N, VONDRAK R R, GJERLOEV J W, et al. A relation between the energy deposition by electron precipi-tation and geomagnetic indices during substorms[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A9): 161-167.
[18] SUTCLIFFE P R. Substorm onset identification using neural networks and Pi2 pulsations[J]. Annales Geophysicae, 1997, 15(10): 1257-1264.
[19] 连慧芳. 紫外极光图像边界和强度建模及亚暴预测研究[D]. 西安: 西安电子科技大学, 2019.
LIAN H F. Study on modeling of the auroral oval boundary and intensity and prediction of auroral substrom[D]. Xi’an: Xidian University, 2019.
[20] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image-Net classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25, Lake Tahoe, Dec 3-6, 2012: 1097-1105.
[21] SIMONYAN K, ZISSERMAN A. Very deep convolutional net-works for large-scale image recognition[J]. arXiv:1409.1556, 2014.
[22] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9.
[23] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[24] ZAGORUYKO S, KOMODAKIS N. Wide residual networks[J]. arXiv:1605.07146, 2016.
[25] HUANG G, LIU Z, VANDER M L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269.
[26] XIE S N, GIRSHICK R, DOLLáR P, et al. Aggregated resi-dual transformations for deep neural networks[C]//Procee-dings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washing-ton: IEEE Computer Society, 2017: 5987-5995.
[27] GAO S H, CHEN M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662.
[28] ZHANG H, WU C R, ZHANG Z Y, et al. ResNeSt: split-attention networks[J]. arXiv:2004.08955, 2020.
[29] LANDOLA F N, HAN S, MOSKEWICZ W M, et al. Squeeze-Net: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size[J]. arXiv:1602.07360, 2016.
[30] CHOLLET F. Xception: deep learning with depthwise se-parable convolutions[C]//Proceedings of the 2017 IEEE Con-ference on Computer Vision and Pattern Recognition, Ho-nolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1800-1807.
[31] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: effi-cient convolutional neural networks for mobile vision app-lications[J]. arXiv:1704.04861, 2017.
[32] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 19-21, 2018. Washington: IEEE Computer Society, 2018: 6848-6856.
[33] TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 6105-6114.
[34] HAN B, HAN Y Y, GAO X B, et al. Boundary constraint factor embedded localizing active contour model for medi-cal image segmentation[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(10): 3853-3862.
[35] HAWKINS D M. The problem of overfitting[J]. Journal of Chemical Information and Computer Sciences, 2004, 44(1): 1-12.
|