计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (10): 2249-2263.DOI: 10.3778/j.issn.1673-9418.2203004
收稿日期:
2022-03-01
修回日期:
2022-06-07
出版日期:
2022-10-01
发布日期:
2022-06-15
通讯作者:
+ E-mail: huixie@aliyun.com作者简介:
吴静(1997—),女,江西九江人,硕士研究生,CCF学生会员,主要研究方向为推荐系统、图神经网络。基金资助:
WU Jing, XIE Hui+(), JIANG Huowen
Received:
2022-03-01
Revised:
2022-06-07
Online:
2022-10-01
Published:
2022-06-15
About author:
WU Jing, born in 1997, M.S. candidate, student member of CCF. Her research interests include re-commendation system and graph neural networks.Supported by:
摘要:
推荐系统(RS)因信息冗杂繁多而诞生。由于数据形式的多样化、复杂化以及数据信息量稀疏性,传统的推荐系统已经不能很好地解决目前的问题。图神经网络(GNN)能从图中对边和节点数据进行特征提取和表示,对处理图结构数据具有先天优势,因此在推荐系统中蓬勃发展。将近年的主要研究成果进行了梳理并加以总结,着重从方法、问题两个角度出发,系统性地综述了图神经网络推荐系统。首先,从方法层面阐述了图卷积网络推荐系统、图注意力网络推荐系统、图自动编码器推荐系统、图生成网络推荐系统、图时空网络推荐系统等五大类的图神经网络推荐系统;接着,从问题相似性出发,归纳出序列推荐问题、社交推荐问题、跨域推荐问题、多行为推荐问题、捆绑推荐问题以及基于会话推荐问题等六大类问题;最后,在对已有方法分析和总结的基础上,指出了目前图神经网络推荐系统研究面临的难点,提出相应的研究问题以及未来研究的方向。
中图分类号:
吴静, 谢辉, 姜火文. 图神经网络推荐系统综述[J]. 计算机科学与探索, 2022, 16(10): 2249-2263.
WU Jing, XIE Hui, JIANG Huowen. Survey of Graph Neural Network in Recommendation System[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2249-2263.
分类 | 作者 | 关键技术 | 问题场景 | 优点 | 局限性 |
---|---|---|---|---|---|
图卷积网络推荐系统 | Ying等[ | GCN、随机游走 | Web推荐任务 | 提高模型的鲁棒性 | 不能解决其他大规模的图表示学习问题 |
Chen等[ | GCN | 所有推荐任务 | 减少处理延迟 | 内存访问模型复杂 | |
Tran等[ | GCN | 应用于大规模异构图数据的推荐任务 | 处理异构图数据 | 仅适用于两个实体,即用户和项目 | |
Shafqat等[ | GCN | 在线产品推荐任务 | 简化了GCN模型的邻居抽样任务,提高了训练效率,降低了复杂度和计算时间 | 需要形成会话图,并不适应于所有推荐系统场景 | |
Yin等[ | GCN | 异构信息网络的推荐任务 | 提取和组合异构图中的结构特征,减小了训练规模,提高了计算效率 | 算法复杂 | |
Chen等[ | GCN、KG | TOP-K推荐 | 提高可解释性 | 学习效率低,未利用更多的辅助信息 | |
Bonet等[ | GCN、递归神经网络 | 大数据推荐任务 | 提高推荐系统的性能和推荐的准确度 | 处理不了冷启动和数据稀疏性问题,忽略了推荐系统的可解释性 | |
图注意力网络推荐系统 | Song等[ | 图注意力神经网络 | 在线社区社交推荐 | 能进行用户的动态的兴趣推荐 | 只能对大规模数据有效 |
Jiang等[ | 图注意力神经网络、GCN | 社交推荐 | 能发现潜在的社会传播效应 | 模型复杂,无法区分社交的正面和负面影响 | |
Wu等[ | 图注意力神经网络 | 社交推荐 | 能学习社会深层次表征,提高推荐准确度 | 需要提取足够多的高层联系信息 | |
Xiao等[ | 图注意力神经网络 | 社交推荐 | 融合用户偏好和社交交互信息 | 不能完全利用辅助信息 | |
Dang等[ | 图注意力神经网络、知识图谱 | Web服务 | 充分挖掘文本特征,解决数据稀疏性问题,优化特征表示,提高推荐的可解释性 | 模型需与其他开放知识库相结合 | |
Li等[ | 图注意力神经网络、知识图谱 | 评级预测任务、TOP-K推荐任务 | 解决数据稀疏和冷启动的问题 | 运行时间较长 | |
Salamat等[ | 图注意力神经网络 | 社交推荐 | 提高了模型的可解释性 | 未考虑社交网络的动态行为 | |
Sang等[ | 图注意力神经网络、知识图谱、残差递归神经网络 | 所有推荐 | 能自动捕捉丰富的语义信息和用户与项目之间复杂的隐含关系 | 未考虑用户之间交互的顺序性 | |
图自动编码器推荐系统 | Zheng等[ | 图自动编码器、GCN | 社交推荐 | 捕捉隐藏在图结构下的隐式高阶关系,提高推荐系统性能 | 未考虑用户之间交互的顺序性 |
Yao等[ | 图自动编码器、GCN | 隐式数据的推荐系统 | 捕获数据相关性以提高推荐性能 | 未考虑时间顺序因素 | |
Deng等[ | 图自动编码器、无监督学习、有监督学习 | 会话推荐 | 考虑了会话中的项目之间依赖关系 | 对模型中各组件和超参数的影响未知 | |
Ohtomo等[ | 图自动编码器 | 个性化推荐 | 从大量帖子中为每个用户个性化推荐帖子 | 训练时间长 | |
图生成网络推荐系统 | Zhou等[ | 图生成神经网络、GCN | 个性化推荐 | 更好地利用辅助信息并生成不受限制的输出表示 | 对稀疏性数据很容易产生过拟合 |
Xu等[ | 图生成神经网络、GCN | 社交推荐 | 解决冷启动问题 | 大图的计算复杂度高 | |
Wu等[ | 图生成神经网络、生成对抗网络 | 在线推荐 | 增强推荐系统的稳定性 | 只能对评论等基于内容的推荐有用 | |
Zhang等[ | 图生成神经网络、GCN | 图像推荐 | 解决了合成细粒度纹理和小规模实例的困难 | 严重依赖于推断的语义 | |
Xu等[ | 图生成神经网络、GCN | 在线视频推荐 | 提高推荐的准确度 | 大图长序列建模困难,信息质量要求高 | |
图时空网络推荐系统 | Park等[ | 图时空神经网络、GCN | 运动风格推荐 | 能提取空间和时间两个维度的特征 | 对随机噪音十分敏感,适合少量已经标好明确样式标签的数据 |
Zhang等[ | 图时空神经网络、图嵌入、GCN | 所有推荐任务 | 适用性广 | 仅仅考虑了二部图,未扩展到多部异构图而且训练过程中提取数据是均匀抽样,其实用性较差 | |
杨珍等[ | 图时空神经网络、GCN | 用户商品推荐 | 提高了推荐系统的性能 | 只能用于购物商品推荐 | |
Han等[ | 图时空神经网络、GCN | POI推荐 | 缓解数据稀疏性问题 | 未能考虑到时空序列节点之间的上下文信息 |
表1 GNN推荐系统各类别的对比
Table 1 Classes comparison of graph neural network in recommendation system
分类 | 作者 | 关键技术 | 问题场景 | 优点 | 局限性 |
---|---|---|---|---|---|
图卷积网络推荐系统 | Ying等[ | GCN、随机游走 | Web推荐任务 | 提高模型的鲁棒性 | 不能解决其他大规模的图表示学习问题 |
Chen等[ | GCN | 所有推荐任务 | 减少处理延迟 | 内存访问模型复杂 | |
Tran等[ | GCN | 应用于大规模异构图数据的推荐任务 | 处理异构图数据 | 仅适用于两个实体,即用户和项目 | |
Shafqat等[ | GCN | 在线产品推荐任务 | 简化了GCN模型的邻居抽样任务,提高了训练效率,降低了复杂度和计算时间 | 需要形成会话图,并不适应于所有推荐系统场景 | |
Yin等[ | GCN | 异构信息网络的推荐任务 | 提取和组合异构图中的结构特征,减小了训练规模,提高了计算效率 | 算法复杂 | |
Chen等[ | GCN、KG | TOP-K推荐 | 提高可解释性 | 学习效率低,未利用更多的辅助信息 | |
Bonet等[ | GCN、递归神经网络 | 大数据推荐任务 | 提高推荐系统的性能和推荐的准确度 | 处理不了冷启动和数据稀疏性问题,忽略了推荐系统的可解释性 | |
图注意力网络推荐系统 | Song等[ | 图注意力神经网络 | 在线社区社交推荐 | 能进行用户的动态的兴趣推荐 | 只能对大规模数据有效 |
Jiang等[ | 图注意力神经网络、GCN | 社交推荐 | 能发现潜在的社会传播效应 | 模型复杂,无法区分社交的正面和负面影响 | |
Wu等[ | 图注意力神经网络 | 社交推荐 | 能学习社会深层次表征,提高推荐准确度 | 需要提取足够多的高层联系信息 | |
Xiao等[ | 图注意力神经网络 | 社交推荐 | 融合用户偏好和社交交互信息 | 不能完全利用辅助信息 | |
Dang等[ | 图注意力神经网络、知识图谱 | Web服务 | 充分挖掘文本特征,解决数据稀疏性问题,优化特征表示,提高推荐的可解释性 | 模型需与其他开放知识库相结合 | |
Li等[ | 图注意力神经网络、知识图谱 | 评级预测任务、TOP-K推荐任务 | 解决数据稀疏和冷启动的问题 | 运行时间较长 | |
Salamat等[ | 图注意力神经网络 | 社交推荐 | 提高了模型的可解释性 | 未考虑社交网络的动态行为 | |
Sang等[ | 图注意力神经网络、知识图谱、残差递归神经网络 | 所有推荐 | 能自动捕捉丰富的语义信息和用户与项目之间复杂的隐含关系 | 未考虑用户之间交互的顺序性 | |
图自动编码器推荐系统 | Zheng等[ | 图自动编码器、GCN | 社交推荐 | 捕捉隐藏在图结构下的隐式高阶关系,提高推荐系统性能 | 未考虑用户之间交互的顺序性 |
Yao等[ | 图自动编码器、GCN | 隐式数据的推荐系统 | 捕获数据相关性以提高推荐性能 | 未考虑时间顺序因素 | |
Deng等[ | 图自动编码器、无监督学习、有监督学习 | 会话推荐 | 考虑了会话中的项目之间依赖关系 | 对模型中各组件和超参数的影响未知 | |
Ohtomo等[ | 图自动编码器 | 个性化推荐 | 从大量帖子中为每个用户个性化推荐帖子 | 训练时间长 | |
图生成网络推荐系统 | Zhou等[ | 图生成神经网络、GCN | 个性化推荐 | 更好地利用辅助信息并生成不受限制的输出表示 | 对稀疏性数据很容易产生过拟合 |
Xu等[ | 图生成神经网络、GCN | 社交推荐 | 解决冷启动问题 | 大图的计算复杂度高 | |
Wu等[ | 图生成神经网络、生成对抗网络 | 在线推荐 | 增强推荐系统的稳定性 | 只能对评论等基于内容的推荐有用 | |
Zhang等[ | 图生成神经网络、GCN | 图像推荐 | 解决了合成细粒度纹理和小规模实例的困难 | 严重依赖于推断的语义 | |
Xu等[ | 图生成神经网络、GCN | 在线视频推荐 | 提高推荐的准确度 | 大图长序列建模困难,信息质量要求高 | |
图时空网络推荐系统 | Park等[ | 图时空神经网络、GCN | 运动风格推荐 | 能提取空间和时间两个维度的特征 | 对随机噪音十分敏感,适合少量已经标好明确样式标签的数据 |
Zhang等[ | 图时空神经网络、图嵌入、GCN | 所有推荐任务 | 适用性广 | 仅仅考虑了二部图,未扩展到多部异构图而且训练过程中提取数据是均匀抽样,其实用性较差 | |
杨珍等[ | 图时空神经网络、GCN | 用户商品推荐 | 提高了推荐系统的性能 | 只能用于购物商品推荐 | |
Han等[ | 图时空神经网络、GCN | POI推荐 | 缓解数据稀疏性问题 | 未能考虑到时空序列节点之间的上下文信息 |
问题分类 | 方法分类 | 作者 | 难点 |
---|---|---|---|
序列推荐问题 | 图注意力网络、图卷积网络 | Yang等[ | 数据稀疏和冷启动问题,异构图 |
图卷积网络、图注意力网络 | Gu等[ | 动态兴趣建模问题 | |
图注意力网络 | Tao等[ | 项目趋势信息,动态图构建问题 | |
图注意力网络 | Wang等[ | 高阶关系建模,可解释性 | |
社交推荐问题 | 图自动编码器 | Guo等[ | 大数据与个性化信息 |
图神经网络 | Liu等[ | 大数据,关系动态变化问题 | |
图注意力网络 | Salamat等[ | 大数据,异构图,可解释性,动态行为 | |
图注意力网络 | Liu等[ | 动态表示问题,知识图 | |
图注意力网络 | Tu等[ | 数据稀疏,个性化问题,知识图 | |
图卷积网络 | Wang等[ | 大数据,隐含兴趣,动态兴趣 | |
跨域推荐问题 | 图神经网络 | Yang等[ | 大数据,数据稀疏和冷启动,动态问题 |
图神经网络 | Loannidis等[ | 可解释性 | |
图神经网络 | Ouyang等[ | 数据稀疏 | |
图注意力网络 | Sheu等[ | 缺乏用户交互记录 | |
图神经网络 | Liang等[ | 信息高效性,异构图 | |
图卷积网络、图注意力网络 | Ma等[ | 异构图,多样性和准确性 | |
图卷积网络 | Wang等[ | 交互图嵌入特征表示 | |
图卷积网络 | He等[ | 邻域聚合 | |
图神经网络 | Amar[ | 算法简洁性,信息高效性 | |
图神经网络 | Liu等[ | 模型精确性 | |
多行为推荐问题 | 图神经网络 | Xia等[ | 提取多类型下的异构关系 |
图神经网络 | Yu等[ | 有效捕获信息 | |
图卷积网络、图注意力网络 | Ma等[ | 异构图,多样性和准确性 | |
捆绑推荐问题 | 图神经网络 | Yang等[ | 信息增强问题 |
图神经网络 | Zhang等[ | 异构图 | |
图注意力网络 | Yuan等[ | 异构图 | |
图神经网络 | Liu等[ | 个性多样化 | |
图神经网络 | Chen等[ | 动态化,准确性 | |
图注意力网络、图卷积网络 | Yang等[ | 数据稀疏和冷启动问题,异构图 | |
图卷积网络 | Gong等[ | 结合深度学习从舞蹈动作中推荐音乐 | |
图神经网络 | Ling等[ | 信息的高阶连通性 | |
图卷积网络、图自动编码器 | Zhang等[ | 大数据,数据稀疏 | |
图神经网络 | Zhu等[ | 数据稀疏和冷启动问题 | |
会话推荐问题 | 图神经网络 | Zheng等[ | 异构图,潜在信息 |
图神经网络 | Yu等[ | 有效捕获信息 | |
图卷积网络、图注意力网络 | Gu等[ | 动态兴趣建模问题 | |
图神经网络 | Huang等[ | 动态信息及信息增强 |
表2 问题相似性归纳分析
Table 2 Inductive analysis of problem similarity
问题分类 | 方法分类 | 作者 | 难点 |
---|---|---|---|
序列推荐问题 | 图注意力网络、图卷积网络 | Yang等[ | 数据稀疏和冷启动问题,异构图 |
图卷积网络、图注意力网络 | Gu等[ | 动态兴趣建模问题 | |
图注意力网络 | Tao等[ | 项目趋势信息,动态图构建问题 | |
图注意力网络 | Wang等[ | 高阶关系建模,可解释性 | |
社交推荐问题 | 图自动编码器 | Guo等[ | 大数据与个性化信息 |
图神经网络 | Liu等[ | 大数据,关系动态变化问题 | |
图注意力网络 | Salamat等[ | 大数据,异构图,可解释性,动态行为 | |
图注意力网络 | Liu等[ | 动态表示问题,知识图 | |
图注意力网络 | Tu等[ | 数据稀疏,个性化问题,知识图 | |
图卷积网络 | Wang等[ | 大数据,隐含兴趣,动态兴趣 | |
跨域推荐问题 | 图神经网络 | Yang等[ | 大数据,数据稀疏和冷启动,动态问题 |
图神经网络 | Loannidis等[ | 可解释性 | |
图神经网络 | Ouyang等[ | 数据稀疏 | |
图注意力网络 | Sheu等[ | 缺乏用户交互记录 | |
图神经网络 | Liang等[ | 信息高效性,异构图 | |
图卷积网络、图注意力网络 | Ma等[ | 异构图,多样性和准确性 | |
图卷积网络 | Wang等[ | 交互图嵌入特征表示 | |
图卷积网络 | He等[ | 邻域聚合 | |
图神经网络 | Amar[ | 算法简洁性,信息高效性 | |
图神经网络 | Liu等[ | 模型精确性 | |
多行为推荐问题 | 图神经网络 | Xia等[ | 提取多类型下的异构关系 |
图神经网络 | Yu等[ | 有效捕获信息 | |
图卷积网络、图注意力网络 | Ma等[ | 异构图,多样性和准确性 | |
捆绑推荐问题 | 图神经网络 | Yang等[ | 信息增强问题 |
图神经网络 | Zhang等[ | 异构图 | |
图注意力网络 | Yuan等[ | 异构图 | |
图神经网络 | Liu等[ | 个性多样化 | |
图神经网络 | Chen等[ | 动态化,准确性 | |
图注意力网络、图卷积网络 | Yang等[ | 数据稀疏和冷启动问题,异构图 | |
图卷积网络 | Gong等[ | 结合深度学习从舞蹈动作中推荐音乐 | |
图神经网络 | Ling等[ | 信息的高阶连通性 | |
图卷积网络、图自动编码器 | Zhang等[ | 大数据,数据稀疏 | |
图神经网络 | Zhu等[ | 数据稀疏和冷启动问题 | |
会话推荐问题 | 图神经网络 | Zheng等[ | 异构图,潜在信息 |
图神经网络 | Yu等[ | 有效捕获信息 | |
图卷积网络、图注意力网络 | Gu等[ | 动态兴趣建模问题 | |
图神经网络 | Huang等[ | 动态信息及信息增强 |
[1] |
于蒙, 何文涛, 周绪川, 等. 推荐系统综述[J]. 计算机应用, 2022, 42(6): 1898-1913.
DOI |
YU M, HE W T, ZHOU X C, et al. Review of recommen-dation system[J]. Journal of Computer Applications, 2022, 42(6): 1898-1913. | |
[2] |
陈江美, 张文德. 基于位置社交网络的兴趣点推荐系统研究综述[J]. 计算机科学与探索, 2022, 16(7): 1462-1478.
DOI |
CHEN J M, ZHANG W D. Review of point of interest recommendation systems based on location-based social networks[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1462-1478. | |
[3] | LIU Z Y, ZHOU J. Introduction to graph neural networks[M]. San Rafael: Morgan & Claypool Publishers, 2020. |
[4] | HENAFF M, BRUNA J, LECUN Y. Deep convolutional net-works on graph-structured data[J]. arXiv:1506.05163, 2015. |
[5] | BASTINGS J, TITOV I, AZIZ W, et al. Graph convolu-tional encoders for syntax-aware neural machine translation[C]// Proceedings of the 2017 Conference on Empirical Me-thods in Natural Language Processing, Copenhagen, Sep 7-11, 2017. Stroudsburg: ACL, 2017: 1957-1967. |
[6] | RHEE S, SEO S, KIM S. Hybridapproach of relation net-work and localized graph convolutional filtering for breast cancer subtype classification[J]. arXiv: 1711.05859, 2017. |
[7] | ZHANG Y H, QI P, MANNING C D. Graph convolution over pruned dependency trees improves relation extraction[C]// Proceedings of the 2018 Conference on Empirical Me-thods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 2205-2215. |
[8] | GAO C, ZHENG Y, LI N, et al. Graph neural networks for recommender systems: challenges, methods, and directions[J]. arXiv:2109.12843, 2021. |
[9] | 吴国栋, 查志康, 涂立静, 等. 图神经网络推荐研究进展[J]. 智能系统学报, 2020, 15(1): 14-24. |
WU G D, ZHA Z K, TU L J, et al. Research advances in graph neural network recommendation[J]. Journal of Intelli-gent Systems, 2020, 15(1): 14-24. | |
[10] | 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780. |
XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Com-puters, 2020, 43(5): 755-780. | |
[11] | YING R, HE R N, CHEN K F, et al. Graph convolutional neural networks for web-scale recommender systems[C]// Proceedings of the 24th ACM SIGKDD International Con-ference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 974-983. |
[12] | CHEN J X, LIN G Q, CHEN J X, et al. Towards efficient allocation of graph convolutional networks on hybrid com-putation-in-memory architecture[J]. Science China Informa-tion Sciences, 2021, 64(6): 108-121. |
[13] |
TRAN D H, SHENG Q Z, ZHANG W E, et al. HeteGraph: graph learning in recommender systems via graph convolu-tional networks[J]. Neural Computing and Applications, 2021. DOI: 10.1007/s00521-020-05667-z.
DOI |
[14] | SHAFQAT W, BYUN Y C. Incorporating similarity mea-sures to optimize graph convolutional neural networks for product recommendation[J]. Applied Sciences-Basel, 2021, 11(4): 1366. |
[15] | YIN Y, ZHENG W. An efficient recommendation algorithm based on heterogeneous information network[J]. Complexity, 2021(17): 1-18. |
[16] | CHEN J Y, YU J, LU W J, et al. IR-Rec: an interpretive rules-guided recommendation over knowledge graph[J]. In-formation Sciences, 2021, 563: 326-341. |
[17] | BONET E R, NGUYEN D M, DELIGIANNIS N, et al. Temporal collaborative filtering with graph convolutional neural networks[C]// Proceedings of the 25th International Conference on Pattern Recognition, Milan, Jan 10-15, 2021. Piscataway: IEEE, 2021: 4736-4742. |
[18] | SONG W P, XIAO Z P, WANG Y F, et al. Session-based social recommendation via dynamic graph attention net-works[C]// Proceedings of the 12th ACM International Con-ference on Web Search and Data Mining, Melbourne, Feb 11-15, 2019. New York: ACM, 2019: 555-563. |
[19] |
JIANG Y B, MA H F, LIU Y H, et al. Enhancing social recommendation via two-level graph attentional networks[J]. Neurocomputing, 2021, 449: 71-84.
DOI URL |
[20] | WU Q T, ZHANG H R, GAO X F, et al. Dual graph atten-tion networks for deep latent representation of multifaceted social effects in recommender systems[C]// Proceedings of the Web Conference 2019:Proceedings of the World Wide Web Conference,San Francisco, May 13-17, 2019. New York: ACM, 2019: 2091-2102. |
[21] | XIAO Y, PEI Q Q, XIAO T T, et al. MutualRec: joint friend and item recommendations with mutualistic attentional graph neural networks[J]. Journal of Network and Com-puter Applications, 2021, 177: 102954. |
[22] |
DANG D P, CHEN C X, LI H C, et al. Deep knowledge-aware framework for web service recommendation[J]. The Journal of Supercomputing, 2021, 77: 14280-14304.
DOI URL |
[23] | LI A C, YANG B. GSIRec: learning with graph side infor-mation for recommendation[J]. World Wide Web-Internet and Web Information Systems, 2021, 24(5): 1411-1437. |
[24] |
SALAMAT A, LUO X, JAFARI A. HeteroGraphRec: a heterogeneous graph-based neural networks for social recom-mendations[J]. Knowledge-Based Systems, 2021, 217: 106817.
DOI URL |
[25] |
SANG L, XU M, QIAN S S, et al. Knowledge graph en-hanced neural collaborative filtering with residual recurrent network[J]. Neurocomputing, 2021, 454: 417-429.
DOI URL |
[26] | BEHROUZI T, HATZINAKOS D. Graph variational auto-encoder for deriving EEG-based graph embedding[J]. Pat-tern Recognition, 2022, 121: 108202. |
[27] |
ZHANG X B, YANG Y, ZHAI D H, et al. Local2Global: unsupervised multi-view deep graph representation lear-ning with nearest neighbor constraint[J]. Knowledge-Based Systems, 2021, 231: 107439.
DOI URL |
[28] |
TRAN Q M, NGUYEN H D, HUYNH T, et al. Measuring the influence and amplification of users on social network with unsupervised behaviors learning and efficient interaction-based knowledge graph[J]. Journal of Combinatorial Opti-mization, 2021. DOI: 10.1007/s10878-021-00815-0.
DOI |
[29] | ZHENG Q Q, LIU G F, LIU A, et al. Implicit relation-aware social recommendation with variational auto-encoder[J]. World Wide Web-Internet and Web Information Systems, 2021, 24(5): 1395-1410. |
[30] | YAO L Y, ZHONG J B, ZHANG X F, et al. Correlated Wasserstein autoencoder for implicit data recommendation[C]// Proceedings of the 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Melbourne, Dec 14-17, 2020. Piscataway: IEEE, 2020: 417-422. |
[31] | DENG K, HUANG J J, QIN J. Hybrid GNN-SR: combi-ning unsupervised and supervised graph learning for ses-sion-based recommendation[C]// Proceedings of the 20th IEEE International Conference on Data Mining Workshops, Sorrento, Nov 17-20, 2020. Piscataway: IEEE, 2020: 136-143. |
[32] | OHTOMO K, HARAKAWA R, QGAWA T, et al. Persona-lized recommendation of Tumblr posts using graph convo-lutional networks with preference-aware multimodal fea-tures[J]. Item Transactions on Media Technology and App-lications, 2021, 9(1): 54-61. |
[33] |
BONGINI P, BIANCHINI M, SCARSELLI F. Molecular generative graph neural networks for drug discovery[J]. Neurocomputing, 2021, 450: 242-252.
DOI URL |
[34] |
ZHOU Y D, DING Z H, LIU X M, et al. Infer-AVAE: an attribute inference model based on adversarial variational autoencoder[J]. Neurocomputing, 2022, 483: 105-115.
DOI URL |
[35] | XU D, RUAN C W, MOTWANI K, et al. Generative graph convolutional network for growing graphs[C]// Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, May 12-17, 2019. Piscataway: IEEE, 2019: 3167-3171. |
[36] |
WU F, GAO M, YU J L, et al. Ready for emerging threats to recommender systems? A graph convolution-based gene-rative shilling attack[J]. Information Sciences, 2021, 578: 683-701.
DOI URL |
[37] |
ZHANG S S, NI J C, HOU L J, et al. Global-affine and local-specific generative adversarial network for semantic-guided image generation[J]. Mathematical Foundations of Computing, 2021, 4(3): 145-165.
DOI URL |
[38] | XU X R, CHEN L M, ZU S P, et al. Hulu video recommen-dation: from relevance to reasoning[C]// Proceedings of the 12th ACM Conference on Recommender Systems, Vancou-ver, Oct 2-7, 2018. New York: ACM, 2018: 482. |
[39] | PARK S, JANG D K, LEE S H. Diverse motion stylization for multiple style domains via spatial-temporal graph-based generative model[J]. Proceedings of the ACM on Compu-ter Graphics and Interactive Techniques, 2021, 4(3): 36. |
[40] |
ZHANG Z, BU J J, LI Z, et al. Tige CMN: on exploration of temporal interaction graph embedding via coupled me-mory neural networks[J]. Neural Networks, 2021, 140: 13-26.
DOI URL |
[41] | 杨珍, 丁铭, 唐杰, 等. 面向推荐系统的时空图卷积方法和系统: CN113269603A[P]. 2021-08-17. |
YANG Z, DING M, TANG J, et al. Temporal and spatial graph convolution method and system for recommendation system: CN113269603A[P]. 2021-08-17. | |
[42] | HAN H Y, ZHANG M D, HOU M, et al. STGCN: a spatial-temporal aware graph learning method for POI recommen-dation[C]// Proceedings of the 20th IEEE International Con-ference on Data Mining, Sorrento, Nov 17-20, 2020. Pisca-taway: IEEE, 2020: 1052-1057. |
[43] | WU S, SUN F, ZHANG W, et al. Graph neural networks in recommender systems: a survey[J]. arXiv:2011.02260, 2020. |
[44] | XIANG N H, ZHAO C R, EMINE Y, et al. Graph techno-logies for user modeling and recommendation: introduc-tion to the special issue-part 1[J]. ACM Transactions on In-formation Systems, 2021, 40(2): 1-5. |
[45] | YANG M H, CAO S S, HU B B, et al. IntelliTag: an intel-ligent cloud customer service system based on tag recom-mendation[C]// Proceedings of the 2021 IEEE 37th Interna-tional Conference on Data Engineering, Chania, Apr 19-22, 2021. Piscataway: IEEE, 2021: 2559-2570. |
[46] |
GU P, HAN Y Q, GAO W, et al. Enhancing session-based social recommendation through item graph embedding and contextual friendship modeling[J]. Neurocomputing, 2021, 419: 190-202.
DOI URL |
[47] |
TAO Y, WANG C, YAO L N, et al. Item trend learning for sequential recommendation system using gated graph neu-ral network[J]. Neural Computing & Applications, 2021. DOI: 10.1007/S00521-021-05723-2.
DOI |
[48] | WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 950-958. |
[49] | GUO Z W, WANG H. A deep graph neural network-based mechanism for social recommendations[J]. IEEE Transac-tions on Industrial Informatics, 2021, 17(4): 2776-2783. |
[50] |
LIU W W, ZHANG Y, WANG J L, et al. Item relationship graph neural networks for e-commerce[J]. IEEE Transac-tions on Neural Networks and Learning Systems, 2021. DOI: 10.1109/TNNLS.2021.3060872.
DOI |
[51] |
SALAMAT A, LUO X, JAFARI A. Hetero Graph Rec: a heterogeneous graph-based neural networks for social re-commendations[J]. Knowledge-based Systems, 2021, 217: 106817.
DOI URL |
[52] |
LIU Y, YANG S, XU Y, et al. Contextualized graph atten-tion network for recommendation with item knowledge graph[J]. IEEE Transactions on Knowledge and Data En-gineering, 2021. DOI: 10.1109/TKDE.2021.3082948.
DOI |
[53] | TU K, CUI P, WANG D, et al. Conditional graph attention networks for distilling and refining knowledge graphs in recommendation[C]// Proceedings of the 30th ACM Interna-tional Conference on Information & Knowledge Manage-ment. New York: ACM, 2021: 1834-1843. |
[54] | WANG H Y, YAO K M, LUO J, et al. An implicit prefe-rence-aware sequential recommendation method based on knowledge graph[J]. Wireless Communications & Mobile Computing, 2021: 5206228. |
[55] | YANG X, HUAN Z Y, ZHAI Y S, et al. Research of per-sonalized recommendation technology based on knowledge graphs[J]. Applied Sciences-Basel, 2021, 11(15): 7104. |
[56] | LOANNIDIS V N, ZAMZAM A S, GIANNAKIS G B, et al. Coupled graphs and tensor factorization for recommen-der systems and community detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(3): 909-920. |
[57] | OUYANG Y, GUO B, TANG X, et al. Mobile App cross-domain recommendation with multi-graph neural network[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(4): 55. |
[58] |
SHEU H S, CHU Z X, QI D Q, et al. Knowledge-guided article embedding refinement for session-based news re-commendation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021. DOI: 10.1109/TNNLS.2021. 3084958.
DOI |
[59] |
LIANG T T, SHENG X, ZHOU L, et al. Mobile app recom-mendation via heterogeneous graph neural network in edge computing[J]. Applied Soft Computing, 2021, 103: 107162.
DOI URL |
[60] | MA M Y, NA S, WANG H Y, et al. The graph-based beha-vior-aware recommendation for interactive news[J]. arXiv:1812.00002V2, 2018. |
[61] | WANG X, HE X, WANG M, et al. Neural graph colla-borative filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference, Paris, Jul 21-25, 2019. New York: ACM, 2019: 165-174. |
[62] | HE X, DENG K, WANG X, et al. Light GCN: simplifying and powering graph convolution network for recommen-dation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Infor-mation Retrieval. New York: ACM, 2020: 639-648. |
[63] | AMAR B. Revisiting SVD to generate powerful node em-beddings for recommendation systems[J]. arXiv:2110.03665, 2021. |
[64] |
LIU H D, YANG B, LI D S. Graph collaborative filtering based on dual-message propagation mechanism[J]. IEEE Transactions on Cybernetics, 2021. DOI: 10.1109/TCYB.2021. 3100521.
DOI |
[65] | XIA L H, HUANG C, XU Y, et al. Multi-behavior enhanced recommendation with cross-interaction collaborative rela-tion modeling[C]// Proceedings of the 2021 IEEE 37th Inter-national Conference on Data Engineering, Chania, Apr 19-22, 2021. Piscataway: IEEE, 2021: 1931-1936. |
[66] |
YU B, ZHANG R Q, CHEN W, et al. Graph neural network based model for multi-behavior session-based recommen-dation[J]. Geoinformatica, 2022, 26(2): 429-447.
DOI URL |
[67] | YANG J, MA W, ZHANG M, et al. Legal GNN: legal infor-mation enhanced graph neural network for recommendation[J]. ACM Transactions on Information Systems, 2021, 40(2): 1-29. |
[68] | ZHANG C, WANG Y, ZHU L, et al. Multi-graph hetero-geneous interaction fusion for social recommendation[J]. ACM Transactions on Information Systems, 2021, 40(2): 1-26. |
[69] |
YUAN Y J, WEN D J, WEI Z, et al. A kg-enhanced multi-graph neural network for attentive herb recommendation[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021. DOI: 10.1109/TCBB.2021.3115489.
DOI |
[70] |
LIU X, SUN Y B, LIU Z W, et al. Learning diverse fashion collocation by neural graph filtering[J]. IEEE Transactions on Multimedia, 2021, 23: 2894-2901.
DOI URL |
[71] | CHEN J G, LI K L, LI K Q, et al. Dynamic planning of bicycle stations in dock less public bicycle-sharing system using gated graph neural network[J]. ACM Transactions on Intelligent Systems and Technology, 2021, 12(2): 25. |
[72] |
GONG W J, YU Q S. A deep music recommendation method based on human motion analysis[J]. IEEE Access, 2021, 9: 26290-26300.
DOI URL |
[73] | LING C Y, ZON Y Z, XIE B. Graph neural network based collaborative filtering for API usage recommendation[C]// Proceedings of the 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering, Honolulu, Mar 9-12, 2021. Piscataway: IEEE, 2021: 36-47. |
[74] | ZHANG Y Q, YANG H Y, KUANG L. A web API recom-mendation method with composition relationship based on GCN[C]// Proceedings of the 2020 IEEE International Con-ference on Parallel & Distributed Processing with Appli-cations, Big Data & Cloud Computing, Sustainable Com-puting & Communications, Social Computing & Networking, Exeter, Dec 17-19, 2020. Piscataway: IEEE, 2020: 601-608. |
[75] |
ZHU Y F, LU H, QIU P, et al. Heterogeneous teaching eva-luation network based offline course recommendation with graph learning and tensor factorization[J]. Neurocomputing, 2021, 415: 84-95.
DOI URL |
[76] | ZHENG Y J, LIU S Y, LI Z K, et al. DGTN: dual-channel graph transition network for session-based recommendation[C]// Proceedings of the 20th IEEE International Conferen-ce on Data Mining, Sorrento, Nov 17-20, 2020. Piscata-way: IEEE, 2020: 236-242. |
[77] | HUANG C, CHEN J, XIA L, et al. Graph-enhanced multi-task learning of multi-level transition dynamics for session-based recommendation[C]// Proceedings of the 2021 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2021: 4123-4130. |
[78] | WU Z T, SONG C Y, CHEN Y Q, et al. A review of recom-mendation system research based on bipartite graph[C]// Proceedings of the 2020 2nd International Conference on Computer Science Communication and Network Security, Sanya, Dec 22-23, 2020: 336. |
[79] |
PAN Z Q, CHEN H H. Collaborative knowledge-enhanced recommendation with self-supervisions[J]. Mathematics, 2021, 9(17): 2129.
DOI URL |
[80] |
GUO J, ZHOU Y, ZHANG P, et al. Trust-aware recommen-dation based on heterogeneous multi-relational graphs fu-sion[J]. Information Fusion, 2021, 74: 87-95.
DOI URL |
[81] | CHEN W, REN P, CAI F, et al. Improving end-to-end se-quential recommendations with intent-aware diversification[C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 175-184. |
[82] |
ISUFI E, POCCHIARI M, HANJALIC A. Accuracy-diversity trade-off in recommender systems via graph convolutions[J]. Information Processing & Management, 2021, 58(2): 102459.
DOI URL |
[83] |
PAN Z Q, CHEN H H. Efficient graph collaborative filte-ring via contrastive learning[J]. Sensors, 2021, 21(14): 4666.
DOI URL |
[1] | 蒋光峰, 胡鹏程, 叶桦, 仰燕兰. 基于重构误差的同构图分类模型[J]. 计算机科学与探索, 2022, 16(1): 185-193. |
[2] | 袁立宁, 李欣, 王晓冬, 刘钊. 图嵌入模型综述[J]. 计算机科学与探索, 2022, 16(1): 59-87. |
[3] | 王晓东, 赵一宁, 肖海力, 王小宁, 迟学斌. 使用GNN与RNN实现用户行为分析[J]. 计算机科学与探索, 2021, 15(5): 838-847. |
[4] | 李鹏辉, 翟正利, 冯舒. 图对抗防御研究进展[J]. 计算机科学与探索, 2021, 15(12): 2292-2303. |
[5] | 蔺奇卡, 张玲玲, 刘均, 赵天哲. 基于问句感知图卷积的教育知识库问答方法[J]. 计算机科学与探索, 2021, 15(10): 1880-1887. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||