[1] ZHAO Y N, XIAO H L. The design of LARGE: log anal-yzing framework in grid environment[J]. E-Science Tech-nology & Application, 2016, 7(3): 3-7.
赵一宁, 肖海力. 网格环境日志分析框架LARGE的设计[J]. 科研信息化技术与应用, 2016, 7(3): 3-7.
[2] SALAKHUTDINOV R, MNIH A. Probabilistic matrix factor-ization[C]//Proceedings of the 21st Annual Conference on Neural Information Processing Systems, Vancouver, Dec 3-6, 2007. Red Hook: Curran Associates, 2007: 1257-1264.
[3] KOREN Y, BELL R, VOLINSKY C. Matrix factorization tech-niques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
[4] KOREN Y, BELL R M. Advances in collaborative filtering[M]//RICCI F, ROKACH L, SHAPIRA B, eds. Recommender Systems Handbook. Berlin, Heidelberg: Springer, 2011.
[5] SARWAR B M, KARYPIS G, KONSTAN J A, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International World Wide Web Conference, Hong Kong, China, May 1-5, 2001. New York:ACM, 2001: 285-295.
[6] LINDEN G, SMITH B, YORK J. Amazon.com recommen-dations: item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003, 7(1): 76-80.
[7] SHANI G, HECKERMAN D, BRAFMAN R I. An MDP-based recommender system[J]. Journal of Machine Learning Research, 2005, 6(1): 1265-1295.
[8] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web, Raleigh, Apr 26-30, 2010. New York: ACM, 2010: 811-820.
[9] LECUN Y, BENGIO Y, HINTON G E. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[10] ZHANG G H, LIU B. Research on time series classification using CNN and bidirectional GRU[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(6): 916-927.
张国豪, 刘波. 采用CNN和Bidirectional GRU的时间序列分类研究[J]. 计算机科学与探索, 2019, 13(6): 916-927.
[11] ZHANG J J, HUANG H, HU Y, et al. Modified recurrent neural networks in spoken language understanding[J]. Computer Engineering and Applications, 2019, 55(18): 155-160.
张晶晶, 黄浩, 胡英, 等. 口语理解中改进循环神经网络的应用[J]. 计算机工程与应用, 2019, 55(18): 155-160.
[12] SHENG L S, LI C, LI X. Classification of mammography based on attention mechanism[J]. Computer Engineering and Applications, 2020, 56(8): 166-170.
盛龙帅, 李策, 李欣. 基于注意力机制的乳腺X线摄影分类方法[J]. 计算机工程与应用, 2020, 56(8): 166-170.
[13] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 3104-3112.
[14] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural net-works[C]//Proceedings of the 4th International Conference on Learning Representations, San Juan, May 2-4, 2016: 1-10.
[15] TAN Y K, XU X X, LIU Y. Improved recurrent neural networks for session-based recommendations[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Boston, Sep 15, 2016. New York: ACM, 2016: 17-22.
[16] TUAN T X, PHUONG T M. 3D convolutional networks for session-based recommendation with content features[C]// Proceedings of the 11th ACM Conference on Recommender Systems, Como, Aug 27-31, 2017. New York: ACM, 2017: 138-146.
[17] LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation[C]//Proceedings of the 2017 ACM Con-ference on Information and Knowledge Management, Sing-apore, Nov 6-10, 2017. New York: ACM, 2017: 1419-1428.
[18] LIU Q, ZENG Y F, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1831-1839.
[19] GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains[C]//Proceedings of the 2005 International Joint Conference on Neural Networks, Montreal, Jul 31-Aug 4, 2005. Piscataway: IEEE, 2005: 1-6.
[20] SCARSELLI F, YONG S L, GORI M, et al. Graph neural networks for ranking Web pages[C]//Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, Compiegne, Sep 19-22, 2015. Washington: IEEE Computer Society, 2005: 666-672.
[21] SCARSELLI F, GORI M, TSOI A C, et al. Computational capabilities of graph neural networks[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 81-102.
[22] LI Y J, TARLOW D, BROCKSCHMIDT M, et al. Gated graph sequence neural networks[C]//Proceedings of the 4th International Conference on Learning Representations, San Juan, May 2-4, 2016: 1-20.
[23] LI Z Y, DING X, LIU T. Constructing narrative event evolutionary graph for script event prediction[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 4201-4207.
[24] LI R Y, TAPASWI M, LIAO R J, et al. Situation recognition with graph neural networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 4183-4192.
[25] MARINO K, SALAKHUTDINOV R, GUPTA A. The more you know: using knowledge graphs for image classification [C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 20-28.
[26] SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs[J]. IEEE Signal Processing Magazine, 2013, 30(3): 83-98.
[27] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral net-works and locally connected networks on graphs[J]. arXiv:1312.6203, 2013.
[28] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 3837-3845.
[29] WU S, TANG Y Y, ZHU Y Q, et al. Session-based recom-mendation with graph neural networks[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Con-ference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 346-353.
[30] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[J]. arXiv:1704.01212, 2017.
[31] FEY M, LENSSEN J E. Fast graph representation learning with PyTorch geometric[J]. arXiv:1903.02428, 2019.
[32] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-13.
[33] ADAM P, SAM G, FRANCISCO M, et al. PyTorch: an imperative style, high-performance deep learning library[C]//Proceedings of the Annual Conference on Neural Infor-mation Processing Systems, Vancouver, Dec 8-14, 2019. Red Hook: Curran Associates, 2019: 8024-8035.
[34] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, Montreal, Jun 18-21, 2009: 452-461.
[35] BIANCHI F M, GRATTAROLA D, LIVI L, et al. Graph neural networks with convolutional ARMA filters[J]. arXiv:1901.01343, 2019.
[36] WU F, ZHANG T, SOUZA JR A H, et al. Simplifying graph convolutional networks[C]//Proceedings of the 36th Intern-ational Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 6861-6871. |