[1] LI Z Z, ZHAO B J, TANG L B, et al. Ship classification based on convolutional neural networks[J]. The Journal of Engineering, 2019(21): 7343-7346.
[2] SU W, WANG Z. Widening residual refine edge reserved neural network for semantic segmentation[J]. Multimedia Tools and Applications, 2019, 78(13): 18229-18247.
[3] XIONG Z, HONG S G, NING A P, et al. Pedestrian detection with EDGE features of color image and HOG on depth images[J]. Automatic Control and Computer Sciences, 2020, 54: 168-178.
[4] SHAO L, BRADY M. Specific object retrieval based on salient regions[J]. Pattern Recognition, 2006, 39(10): 1932-1948.
[5] GUO C, ZHANG L. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression[J]. IEEE Transactions on Image Processing, 2009, 19(1): 185-198.
[6] MAHADEVAN V, VASCONCELOS N. Biologically inspired object tracking using center-surround saliency mechanisms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(3): 541-554.
[7] QU L, HE S, ZHANG J, et al. RGBD salient object detection via deep fusion[J]. IEEE Transactions on Image Processing, 2017, 26(5): 2274-2285.
[8] FAN D P, LIN Z, ZHANG Z, et al. Rethinking RGB-D salient object detection: models, data sets, and large-scale benchmarks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(5): 2075-2089.
[9] LIU Z, SHI S, DUAN Q, et al. Salient object detection for RGB-D image by single stream recurrent convolution neural network[J]. Neurocomputing, 2019, 363: 46-57.
[10] DESINGH K, KRISHNA K M, RAJAN D, et al. Depth really matters: improving visual salient region detection with depth[C]//Proceedings of the British Machine Vision Conference, Bristol, Sep 9-13, 2013. Durham: BMVA Press, 2013: 1-11.
[11] GUO J F, REN T W, BEI J. Salient object detection for RGB-D image via saliency evolution[C]//Proceedings of the 2016 IEEE International Conference on Multimedia and Expo, Seattle, Jul 11-15, 2016. Washington: IEEE Computer Society, 2016: 1-6.
[12] WANG N, GONG X. Adaptive fusion for RGB-D salient object detection[J]. IEEE Access, 2019, 7: 55277-55284.
[13] CHEN H, LI Y, SU D. Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB- D salient object detection[J]. Pattern Recognition, 2019, 86: 376-385.
[14] LI G Y, LIU Z, LING H. ICNet: information conversion network for RGB-D based salient object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 4873-4884.
[15] FAN D P, ZHAI Y, BORJI A, et al. BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[C]//LNCS 12357:Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham:Springer, 2020: 275-292.
[16] RONNEBERGER O, FISCHER P, BROX T. U-Net: con-volutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Berlin, Heidelberg: Springer, 2015: 234-241.
[17] LI G Y, LIU Z, YE L W, et al. Cross-modal weighting network for RGB-D salient object detection[C]//LNCS 12362: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 665-681.
[18] LI C, CONG R, KWONG S, et al. ASIF-Net: attention steered interweave fusion network for RGB-D salient object detection[J]. IEEE Transactions on Cybernetics, 2020, 51(1): 88-100.
[19] FU K R, FAN D P, JI G P, et al. JL-DCF: joint learning and densely-cooperative fusion framework for RGB-D salient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 3049-3059.
[20] CHEN Q, LIU Z, ZHANG Y, et al. RGB-D salient object detection via 3D convolutional neural networks[J]. arXiv:2101.10241, 2021.
[21] LI G, LIU Z, CHEN M, et al. Hierarchical alternate interaction network for RGB-D salient object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 3528-3542.
[22] JIN W D, XU J, HAN Q, et al. CDNet: complementary depth network for RGB-D salient object detection[J]. IEEE Transac-tions on Image Processing, 2021, 30: 3376-3390.
[23] TAN M X, LE Q V. Efficientnet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the 2019 International Conference on Machine Learning, Long Beach, Jun 9-15, 2019. New York: ACM, 2019: 6105-6114.
[24] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[25] PASZKE A, GROSS S, MASSAF, et al. PyTorch: an imperative style, high performance deep learning library[C]//Advances in Neural Information Processing Systems 32, Vancouver, Dec 8-14, 2019: 8026-8037.
[26] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems 25, Lake Tahoe, Dec 3-6, 2012: 1097-1105.
[27] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014.
[28] JU R, GE L, GENG W, et al. Depth saliency based on anisotropic center-surround difference[C]//Proceedings of the 2014 IEEE International Conference on Image Processing, Paris, Oct 27-30, 2014. Piscataway: IEEE, 2014: 1115-1119.
[29] PENG H W, LI B, XIONG W H, et al. RGBD salient object detection: a benchmark and algorithms[C]//LNCS 8691:Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 92-109.
[30] NIU Y Z, GENG Y J, LI X Q, et al. Leveraging stereopsis for saliency analysis[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, Jun 16-21, 2012. Washington: IEEE Computer Society, 2012: 454-461.
[31] CHENG Y P, FU H Z, WEI X X, et al. Depth enhanced saliency detection method[C]//Proceedings of 2014 International Conference on Internet Multimedia Computing and Service,Xiamen, Jul 10-12, 2014. New York: ACM, 2014: 23-27.
[32] LI N Y, YE J W, JI Y, et al. Saliency detection on light field[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 2806-2813.
[33] LI G, ZHU C B. A three-pathway psychobiological framework of salient object detection using stereoscopic technology[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 3008-3014.
[34] PIAO Y R, JI W, LI J J, et al. Depth-induced multi-scale recurrent attention network for saliency detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 7253-7262.
[35] ZHAO J X, CAO Y, FAN D P, et al. Contrast prior and fluid pyramid integration for RGB-D salient object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20,2019. Piscataway: IEEE, 2019: 3927-3936.
[36] ZHANG J, FAN D P, DAI Y C, et al. UC-Net: uncertainty inspired RGB-D saliency detection via conditional variational autoencoders[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 8579-8588.
[37] SUN P, ZHANG W H, WANG H Y, et al. Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion[J]. arXiv:2103.11832, 2021.
[38] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[39] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
|