[1] ZHENG B, LIU O Y, LI J, et al. Towards a distributed local search approach for partitioning large-scale social networks[J]. Information Sciences, 2020, 508: 200-213.
[2] YANG W Y, WANG G J, BHUIYAN M Z A, et al. Hyper-graph partitioning for social networks based on information entropy modularity[J]. Journal of Network and Computer Applications, 2017, 86: 59-71.
[3] LI W M, XIE J, XIN M J, et al. An overlapping network community partition algorithm based on semi-supervised matrix factorization and random walk[J]. Expert Systems with Applications, 2018, 91: 277-285.
[4] DONG Z S, WANG S S, LIU Q. Spectral based hypothesis testing for community detection in complex networks[J]. Information Sciences, 2020, 512: 1360-1371.
[5] JIANG H, LIU Z J, LIU C L, et al. Community detection in complex networks with an ambiguous structure using central node based link prediction[J]. Knowledge-Based Systems, 2020, 195: 105626.
[6] ZHOU Z, WEI H W, XIE H L. Improved community struc-ture discovery algorithm based on penalised matrix decom-position for complex networks[J]. Microprocessors and Microsystems, 2020, 75: 103047.
[7] NATH K, ROY S, NANDI S. InOvIn: a fuzzy-rough app-roach for detecting overlapping communities with intrinsic structures in evolving networks[J]. Applied Soft Computing, 2020, 89: 106096.
[8] MA N, FAN M, LI J H. Concept-cognitive learning under complex network[J]. Journal of Nanjing University (Natural Science Edition), 2019, 55(4): 609-623.
马娜, 范敏, 李金海. 复杂网络下的概念认知学习[J]. 南京大学学报(自然科学版), 2019, 55(4): 609-623.
[9] MI Y L, LI J H, LIU W Q, et al. Research on granular concept cognitive learning system under MapReduce frame-work[J]. Acta Electronica Sinica, 2018, 46(2): 289-297.
米允龙, 李金海, 刘文奇, 等. MapReduce框架下的粒概念认知学习系统研究[J]. 电子学报, 2018, 46(2): 289-297.
[10] HUANG C C. Three-way cognitive concept learning via information fusion[D]. Kunming: Kunming University of Science and Technology, 2017.
黄晨晨. 基于信息融合的三支概念认知学习[D]. 昆明: 昆明理工大学, 2017.
[11] ZHANG W X, XU W H. Cognitive model based on granular computing[J]. Chinese Journal of Engineering Mathematics, 2007, 24(6): 957-971.
张文修, 徐伟华. 基于粒计算的认知模型[J]. 工程数学学报, 2007, 24(6): 957-971.
[12] XU W H, LI W T. Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets[J]. IEEE Transactions on Cybernetics, 2016, 46(2): 366-379.
[13] YAO Y Y. Interpreting concept learning in cognitive infor-matics and granular computing[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2009, 39(4): 855-866.
[14] QIU G F, MA J M, YANG H Z, et al. A mathematical model for concept granular computing systems[J]. Science in China Series F: Information Sciences, 2009, 39(12): 1239-1247.
仇国芳, 马建敏, 杨宏志, 等. 概念粒计算系统的数学模型[J]. 中国科学: F辑 信息科学, 2009, 39(12): 1239-1247.
[15] SHI Y, MI Y L, LI J H, et al. Concurrent concept-cognitive learning model for classification[J]. Information Sciences, 2019, 496: 65-81.
[16] LI J H, MEI C L, XU W H, et al. Concept learning via granular computing: a cognitive viewpoint[J]. Information Sciences, 2015, 298: 447-467.
[17] ZHANG T, LI H H, LIU M Q, et al. Incremental concept-cognitive learning based on attribute topology[J]. Interna-tional Journal of Approximate Reasoning, 2020, 118: 173-189.
[18] YANG R. Research on classification rule mining algorithm based on the set of formal concepts[D]. Zhengzhou: Zheng-zhou University, 2009.
杨冉. 基于形式概念集的分类规则挖掘算法研究[D]. 郑州: 郑州大学, 2009.
[19] LI Y, LIU Z T, WU Q, et al. Research on the distributed treatment of concept lattices[J]. Journal of Chinese Computer Systems, 2005, 26(3): 448-451.
李云, 刘宗田, 吴强, 等. 概念格的分布处理研究[J]. 小型微型计算机系统, 2005, 26(3): 448-451.
[20] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[C]//LNCS 5548: Proceedings of the 7th International Conference on Formal Concept Analysis, Darmstadt, May 21-24, 2009. Berlin, Heidelberg: Springer, 1982: 445-470.
[21] NEWMAN M E J. Networks: an introduction[M]. Oxford: Oxford University Press, 2010. |