[1] ABDULLAHI M, NGADI M A, ABDULHAMID S M. Sym-biotic organism search optimization based task scheduling in cloud computing environment[J]. Future Generation Com-puter Systems-The International Journal of Escience, 2016, 56: 640-650.
[2] ZHANG Y, SUN J. Novel efficient particle swarm optimiza-tion algorithms for solving QoS-demanded bag-of-tasks scheduling problems with profit maximization on hybrid clouds[J]. Concurrency and Computation-Practice & Expe-rience, 2017, 29(21): e4249.
[3] JUAREZ F, EJARQUE J, BADIA R M. Dynamic energy-aware scheduling for parallel task-based application in cloud computing[J]. Future Generation Computer Systems, 2016, 78: 257-271.
[4] EPHZIBAH E P. Time complexity analysis of genetic-fuzzy system for disease diagnosis[J]. Advanced Computing: An International Journal, 2011, 2(4): 23-31.
[5] VENKATESA K V, DINESH K. Job scheduling using fuzzy neural network algorithm in cloud environment[J]. Bonfring International Journal of Man Machine Interface, 2012, 2(1): 1-6.
[6] LI C Y, CAO K H, FENG S X, et al. Resource scheduling with uncertain execution time in cloud computing[J]. Journal of Harbin University of Science and Technology, 2019, 24(1): 85-91.
李成严, 曹克翰, 冯世祥, 等. 不确定执行时间的云计算资源调度[J]. 哈尔滨理工大学学报, 2019, 24(1): 85-91.
[7] MA Y, WANG Y. Grid task scheduling based on chaotic ant colony optimization algorithm[C]//Proceedings of the 2012 International Conference on Computer Science and Network Technology, Changchun, Dec 29-31, 2012. Piscataway: IEEE, 2013: 469-472.
[8] HASSAN M A, KACEM I, MARTIN S, et al. Genetic algo-rithms for job scheduling in cloud computing[J]. Studies in Informatics & Control, 2015, 24(4): 387-399.
[9] SADHASIVAM N, THANGARAJ P. Design of an improved PSO algorithm for workflow scheduling in cloud computing environment[J]. Intelligent Automation & Soft Computing, 2016, 31(8): 493-500.
[10] HU X X, ZHOU X W. Improved ant colony algorithm on scheduling optimization of cloud computing resources[J]. Applied Mechanics & Materials, 2014, 678: 75-78.
[11] LEUNG Y W, WANG Y. An orthogonal genetic algorithm with quantization for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2001, 5(1): 41-53.
[12] JIANG Z Y, CAI Z X, WANG Y. Hybrid self-adaptive orthogonal genetic algorithm for solving global optimization problems[J]. Journal of Software, 2010, 21(6): 1296-1307.
江中央, 蔡自兴, 王勇. 求解全局优化问题的混合自适应正交遗传算法[J]. 软件学报, 2010, 21(6): 1296-1307.
[13] MAO H Y, WANG W D. Particle swarm optimization based on adaptive inertia weight model with membership function[J]. Computer Applications and Software, 2020, 37(1): 277-283.
毛焕宇, 王文东. 融合隶属度函数的自适应惯性权重模式的粒子群优化算法[J]. 计算机应用与软件, 2020, 37(1): 277-283.
[14] RAQUEL C, YAO X. Dynamic multi-objective optimization: a survey of the state-of-the-art[J]. Evolutionary Computation for Dynamic Optimization Problems, 2013, 490: 85-106.
[15] ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization: TIK-Report 103[R]. Zurich: Swiss Federal In-stitute of Technology, 2002.
[16] PURSHOUSE R C, FLEMING P J. Evolutionary many-objective optimization: an exploratory analysis[C]//Procee-dings of the 2003 IEEE Evolutionary Computation, Can-berra, Dec 8-12, 2003. Piscataway: IEEE, 2003: 2066-2073.
[17] ZITZLER E, KUNZLI S. Indicator-based selection in evolu-tionary multiobjective optimization algorithm based on the desirability index[J]. Journal of Multi-Criteria Decision Ana-lysis, 2013, 20(5/6): 319-337.
[18] BADER J, ZITZLER E. HypE: an algorithm for fast hyper-volume-based many-objective optimization[J]. IEEE Transac-tions on Evolutionary Computation, 2011, 19(1): 45-76.
[19] LI K, FIALHO A, KWONG S, et al. Adaptive operator selec-tion with bandits for a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolu-tionary Computation, 2014, 18(1): 114-130.
[20] ZHANG Q F, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[21] ZHENG J H, SHI Z Z, XIE Y. A fast multi-objective genetic algorithm based on clustering[J]. Journal of Computer Re-search and Development, 2004, 41(7): 44-50.
郑金华, 史忠植, 谢勇. 基于聚类的快速多目标遗传算法[J]. 计算机研究与发展, 2004, 41(7): 44-50.
[22] SAHMOUD S, TOPCUOGLU H R. Sensor-based change detection schemes for dynamic multi-objective optimization problems[C]//Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2016: 1-8.
[23] MIRIAM A J, SAMINATHAN R, CHAKARAVARTHI S. Non-dominated sorting genetic algorithm (NSGA-III) for effective resource allocation in cloud[J]. Evolutionary Intelli-gence, 2021, 14: 759-765.
[24] LI H, ZHANG Q F. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[25] SIERRA M R, COELLO C C A. Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance[C]//Proceedings of the 2005 International Con-ference on Evolutionary Multi-Criterion Optimization. Berlin, Heidelberg: Springer, 2005: 505-519.
[26] SCHüTZE O, HERNáNDEZ V A S, TRAUTMANN H, et al. The hypervolume based directed search method for multi-objective optimization problems[J]. Journal of Heuristics, 2016, 22(3): 1-28.
[27] LIU R C, LI J X, LIU J, et al. A survey on dynamic multi-objective optimization[J]. Chinese Journal of Computers, 2020, 43(7): 1246-1278.
刘若辰, 李建霞, 刘静, 等. 动态多目标优化研究综述[J]. 计算机学报, 2020, 43(7): 1246-1278.
[28] YANG X L, QIAN C, ZHU F X. Evaluation method of big data service resources based on cloud computing[J]. Com-puter Science, 2018, 45(5): 295-299.
阳小兰, 钱程, 朱福喜. 基于云计算的大数据服务资源评价方法[J]. 计算机科学, 2018, 45(5): 295-299.
[29] BALIN S. Non-identical parallel machine scheduling with fuzzy processing times using genetic algorithm and simula-tion[J]. International Journal of Advanced Manufacturing Technology, 2012, 61(9-12): 1115-1127.
[30] CALHEIROS R N, RANJAN R, BELOGLAZOV A, et al. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provi-sioning algorithms[J]. Software Practice & Experience, 2010, 41(1): 23-50.
[31] AL-SHAIKHI A A, KHAN A H, AL-AWAMI A T, et al. A hybrid particle swarm optimization technique for adaptive equalization[J]. Arabian Journal for Science and Engineering, 2019(3): 2177-2184.
[32] KRUSIENSKI D J, JENKINS W K. A modified particle swarm optimization algorithm for adaptive filtering[C]//Proceedings of the 2006 IEEE International Symposium on Circuits & Systems, Island of Kos, May 21-24, 2006. Pis-cataway: IEEE, 2006: 137-140.
[33] QIN Q D, CHENG S, ZHANG Q Y, et al. Multiple stra-tegies based orthogonal design particle swarm optimizer for numerical optimization[J]. Computers & Operations Research, 2015, 60: 91-110. |