[1] PAWLAK Z. Rough sets: theoretical aspects of reasoning about data[M]. Hingham: Kluwer Academic Publishers, 1992.
[2] DOWLATSHAHI M B, DERHAMI V, NEZAMABADI P H. Ensemble of filter-based rankers to guide an epsilon-greedy swarm optimizer for high-dimensional feature subset selection [J]. Information, 2017, 8: 152.
[3] CHEN H M, LI T R, LUO C, et al. A decision-theoretic rough set approach for dynamic data mining[J]. IEEE Transactions on Fuzzy Systems, 2015, 23: 1958-1970.
[4] MANORANJAN D, HUAN L. Consistency-based search in feature selection[J]. Artificial Intelligence, 2003, 151: 155-176.
[5] HU Q H, YU D R, XIE Z X. Neighborhood classifiers[J]. Expert Systems with Applications, 2008, 34: 866-876.
[6] YAO Y Y, ZHANG X Y. Class-specific attribute reducts in rough set theory[J]. Information Sciences, 2017, 418/419: 601-618.
[7] CHANDRIMA S, SARAH C, JAIDEEP S. Robust feature selection technique using rank aggregation[J]. Applied Arti-ficial Intelligence, 2014, 28: 243-257.
[8] GAO Y, CHEN X J, WANG P X, et al. Attribute reduction over consistent samples[J]. CAAI Transactions on Intelligent Systems, 2019, 14(6): 1170-1178.
高媛, 陈向坚, 王平心, 等. 面向一致性样本的属性约简[J]. 智能系统学报, 2019, 14(6): 1170-1178.
[9] YANG X B, YAO Y Y. Ensemble selector for attribute redu-ction[J]. Applied Soft Computing, 2018, 70: 1-11.
[10] WANG C Z, HU Q H, WANG X Z, et al. Feature selection based on neighborhood discrimination index[J]. IEEE Tran-sactions on Neural Networks and Learning Systems, 2018, 29(7): 2986-2999.
[11] LI Y W, LIN Y J, LIU J H, et al. Feature selection for multi-label learning based on kernelized fuzzy rough set[J]. Neur-ocomputing, 2018, 318: 271-286.
[12] JIANG Z H, YANG X B, YU H L, et al. Accelerator for multi-granularity attribute reduction[J]. Knowledge-Based Systems, 2019, 177: 145-158.
[13] LIU K Y, YANG X B, YU H L, et al. An efficient selector for multi-granularity attribute reduction[J]. Information Sci-ences, 2019, 505: 457-472.
[14] GAO Y, CHEN X J, YANG X B, et al. Neighborhood attri-bute reduction: a multicriterion strategy based on sample selection[J]. Information, 2018, 9(11): 282-302.
[15] WITOLD P, GIANCARLO S, ALBERTO S, et al. Data des-cription: a general framework of information granules[J]. Knowledge-Based Systems, 2015, 80: 98-108.
[16] JIANG Z H, WANG Y B, XU G, et al. Multi-scale based accelerator for attribute reduction[J]. Computer Science, 2019, 46(12): 250-256.
姜泽华, 王怡博, 徐刚, 等. 面向多尺度的属性约简加速器[J]. 计算机科学, 2019, 46(12): 250-256.
[17] XU W, YU J. A novel approach to information fusion in multi-source data sets: a granular computing viewpoint[J]. Information Sciences, 2017, 378: 410-423.
[18] QIAN Y H, CHENG H H, WANG J T, et al. Grouping gran-ular structures in human granulation intelligence[J]. Inform-ation Sciences, 2017, 382/383: 150-169.
[19] LIU K Y, YANG X B, YU H L, et al. Rough set based semi-supervised feature selection via ensemble selector[J]. Knowledge-Based Systems, 2019, 165: 282-296.
[20] LI Z Y, YANG X B, XU S P, et al. Attribute reduction app-roach to neighborhood decision agreement[J]. Journal of Henan Normal University (Natural Science Edition), 2017, 45(5): 68-73.
李智远, 杨习贝, 徐苏平, 等. 邻域决策一致性的属性约简方法研究[J]. 河南师范大学学报(自然科学版), 2017, 45(5): 68-73.
[21] ZHANG X, MEI C L, CHEN D G, et al. Feature selection in mixed data: a method using a novel fuzzy rough set-based information entropy[J]. Pattern Recognition, 2016, 56: 1-15. |