计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (1): 231-241.DOI: 10.3778/j.issn.1673-9418.2105033
收稿日期:
2021-05-11
修回日期:
2021-08-13
出版日期:
2022-01-01
发布日期:
2021-08-25
通讯作者:
+ E-mail: liguoping@sues.edu.cn作者简介:
钱伍(1995—),男,硕士研究生,主要研究方向为计算机视觉、深度学习。基金资助:
QIAN Wu, WANG Guozhong, LI Guoping+()
Received:
2021-05-11
Revised:
2021-08-13
Online:
2022-01-01
Published:
2021-08-25
About author:
QIAN Wu, born in 1995, M.S. candidate. His research interests include computer vision and deep learning.Supported by:
摘要:
交通灯检测算法作为自动驾驶任务中的一个重要环节,直接关系到智能汽车的行车安全。因为交通灯尺度小且环境复杂,给算法研究带来了困难。针对交通检测存在的痛点,提出改进YOLOv5的交通灯检测算法。首先使用可见标签比确定模型输入;然后引入ACBlock结构增加主干网络的特征提取能力,设计SoftPool减少主干网络的采样信息损失,使用DSConv卷积核减少模型参数;最后设计了记忆性特征融合网络,高效利用了高级语义信息和底层特征。对模型输入和主干网络的改进,直接提高模型在复杂环境下对特征的提取能力;对特征融合网络的改进,使模型能够充分利用特征信息,增加对目标定位和边界回归的精准度。实验结果表明,改进后的方法在BDD100K数据集上取得了74.3%的AP和111 frame/s的检测速度,比YOLOv5提高11.0个百分点的AP;在Bosch数据集上取得了84.4%的AP和126 frame/s的检测速度,比YOLOv5提高9.3个百分点的AP。鲁棒性测试结果表明,改进后的模型在各种复杂环境中对目标的检测能力都有显著提升,鲁棒性增加,做到了高精度实时检测。
中图分类号:
钱伍, 王国中, 李国平. 改进YOLOv5的交通灯实时检测鲁棒算法[J]. 计算机科学与探索, 2022, 16(1): 231-241.
QIAN Wu, WANG Guozhong, LI Guoping. Improved YOLOv5 Traffic Light Real-Time Detection Robust Algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 231-241.
| Visible label ratio/% | Input size | YOLOv5s | I-YOLOv5s | ||||
---|---|---|---|---|---|---|---|---|
AP/% | Time/ms | GPU/GB | AP/% | Time/ms | GPU/GB | |||
10 | 88.61 | | 66.3 | 123 | 7.69 | 73.0 | 98 | 17.9 |
11 | 82.57 | | 65.6 | 123 | 7.65 | 73.0 | 99 | 17.7 |
12 | 75.77 | | 64.8 | 123 | 7.60 | 72.8 | 104 | 14.5 |
13 | 68.77 | | 64.0 | 122 | 7.10 | 72.3 | 111 | 12.7 |
14 | 62.35 | | 63.1 | 123 | 5.50 | 71.6 | 111 | 7.77 |
16 | 51.26 | | 61.6 | 132 | 5.24 | 69.9 | 122 | 7.38 |
表1 可见标签比与模型性能关系
Table 1 Relationship between visible label ratio and model performance
| Visible label ratio/% | Input size | YOLOv5s | I-YOLOv5s | ||||
---|---|---|---|---|---|---|---|---|
AP/% | Time/ms | GPU/GB | AP/% | Time/ms | GPU/GB | |||
10 | 88.61 | | 66.3 | 123 | 7.69 | 73.0 | 98 | 17.9 |
11 | 82.57 | | 65.6 | 123 | 7.65 | 73.0 | 99 | 17.7 |
12 | 75.77 | | 64.8 | 123 | 7.60 | 72.8 | 104 | 14.5 |
13 | 68.77 | | 64.0 | 122 | 7.10 | 72.3 | 111 | 12.7 |
14 | 62.35 | | 63.1 | 123 | 5.50 | 71.6 | 111 | 7.77 |
16 | 51.26 | | 61.6 | 132 | 5.24 | 69.9 | 122 | 7.38 |
Model | Average IOU |
---|---|
YOLOv5+PANet | 0.528 |
YOLOv5+Our FPN | 0.591 |
表2 预测框与真实框的平均IOU
Table 2 Average IOU of predict and ground truth boxes
Model | Average IOU |
---|---|
YOLOv5+PANet | 0.528 |
YOLOv5+Our FPN | 0.591 |
ACBlock | SoftPool | DSConv | Our FPN | AP/% | FLOPS/109 |
---|---|---|---|---|---|
— | — | — | — | 62.9 | 117 |
√ | — | — | — | 68.3 | 198 |
— | √ | — | — | 65.7 | 115 |
— | — | √ | — | 62.7 | 112 |
— | — | — | √ | 68.5 | 92 |
√ | √ | — | — | 69.9 | 195 |
√ | √ | √ | — | 69.6 | 191 |
√ | √ | √ | √ | 73.2 | 166 |
表3 以YOLOv5l为基础模型的消融实验
Table 3 Ablation experiments based on YOLOv5l
ACBlock | SoftPool | DSConv | Our FPN | AP/% | FLOPS/109 |
---|---|---|---|---|---|
— | — | — | — | 62.9 | 117 |
√ | — | — | — | 68.3 | 198 |
— | √ | — | — | 65.7 | 115 |
— | — | √ | — | 62.7 | 112 |
— | — | — | √ | 68.5 | 92 |
√ | √ | — | — | 69.9 | 195 |
√ | √ | √ | — | 69.6 | 191 |
√ | √ | √ | √ | 73.2 | 166 |
Model | Input size | AP/% | 检测速度/(frame/s) |
---|---|---|---|
Dense-ACSSD[ | 448×448 | 10.27 | 35 |
YOLOv3 | 416×416 | 37.67 | 27 |
Gaussian YOLOv3 | 416×416 | 46.78 | 30 |
YOLOv5s | 640×640 | 61.60 | 132 |
YOLOv5m | 640×640 | 62.80 | 100 |
YOLOv5l | 640×640 | 62.90 | 83 |
YOLOv5x | 640×640 | 63.30 | 55 |
EfficientDet-D0 | 512×512 | 14.50 | 33 |
EfficientDet-D1 | 640×640 | 28.90 | 25 |
EfficientDet-D2 | 736×736 | 45.50 | 24 |
I-YOLOv5s | 800×800 | 72.30(+9.0) | 111 |
I-YOLOv5m | 800×800 | 73.60(+10.3) | 76 |
I-YOLOv5l | 800×800 | 73.90(+10.6) | 62 |
I-YOLOv5x | 800×800 | 74.30(+11.0) | 40 |
表4 不同模型在BDDTL数据集上的测试结果
Table 4 Test results of different models on BDDTL
Model | Input size | AP/% | 检测速度/(frame/s) |
---|---|---|---|
Dense-ACSSD[ | 448×448 | 10.27 | 35 |
YOLOv3 | 416×416 | 37.67 | 27 |
Gaussian YOLOv3 | 416×416 | 46.78 | 30 |
YOLOv5s | 640×640 | 61.60 | 132 |
YOLOv5m | 640×640 | 62.80 | 100 |
YOLOv5l | 640×640 | 62.90 | 83 |
YOLOv5x | 640×640 | 63.30 | 55 |
EfficientDet-D0 | 512×512 | 14.50 | 33 |
EfficientDet-D1 | 640×640 | 28.90 | 25 |
EfficientDet-D2 | 736×736 | 45.50 | 24 |
I-YOLOv5s | 800×800 | 72.30(+9.0) | 111 |
I-YOLOv5m | 800×800 | 73.60(+10.3) | 76 |
I-YOLOv5l | 800×800 | 73.90(+10.6) | 62 |
I-YOLOv5x | 800×800 | 74.30(+11.0) | 40 |
Model | Input size | AP/% | 检测速度/(frame/s) |
---|---|---|---|
YOLOv5s | 640×640 | 75.1 | 130 |
YOLOv5m | 640×640 | 67.6 | 100 |
YOLOv5l | 640×640 | 67.9 | 83 |
YOLOv5x | 640×640 | 74.2 | 52 |
I-YOLOv5s | 800×800 | 82.8 | 126 |
I-YOLOv5m | 800×800 | 82.8 | 91 |
I-YOLOv5l | 800×800 | 82.9 | 71 |
I-YOLOv5x | 800×800 | 84.4(+9.3) | 46 |
表5 不同模型在Bosch数据集上的测试结果
Table 5 Test results of different models on Bosch
Model | Input size | AP/% | 检测速度/(frame/s) |
---|---|---|---|
YOLOv5s | 640×640 | 75.1 | 130 |
YOLOv5m | 640×640 | 67.6 | 100 |
YOLOv5l | 640×640 | 67.9 | 83 |
YOLOv5x | 640×640 | 74.2 | 52 |
I-YOLOv5s | 800×800 | 82.8 | 126 |
I-YOLOv5m | 800×800 | 82.8 | 91 |
I-YOLOv5l | 800×800 | 82.9 | 71 |
I-YOLOv5x | 800×800 | 84.4(+9.3) | 46 |
Condition | YOLOv5s | YOLOv5m | YOLOv5l | YOLOv5x | I-YOLOv5s | I-YOLOv5m | I-YOLOv5l | I-YOLOv5x | |
---|---|---|---|---|---|---|---|---|---|
size | small | 59.3 | 60.4 | 60.3 | 60.7 | 69.9 | 71.2 | 71.5 | 71.9(+11.2) |
medium | 76.3 | 78.7 | 79.0 | 79.3 | 85.6 | 86.6 | 87.2(+7.9) | 87.2 | |
large | 34.2 | 48.6 | 33.5 | 37.0 | 56.6 | 68.0(+19.4) | 53.5 | 66.1 | |
time | dawn/dusk | 60.1 | 62.6 | 62.3 | 62.8 | 73.5 | 74.9 | 75.5 | 75.8(+13.0) |
daytime | 63.5 | 64.9 | 65.0 | 65.8 | 76.1 | 77.9 | 78.5 | 78.6(+12.8) | |
night | 58.9 | 59.7 | 59.8 | 59.5 | 66.8 | 67.4 | 67.5 | 68.1(+8.3) | |
scene | city street | 62.3 | 63.5 | 63.7 | 63.9 | 73.0 | 74.2 | 74.5(+10.6) | 74.9 |
gas station | 71.6 | 54.9 | 56.9 | 54.3 | 58.7 | 72.1 | 77.3 | 80.4(+8.8) | |
highway | 56.7 | 58.0 | 57.7 | 58.1 | 67.9 | 68.4 | 69.5 | 69.6(+11.5) | |
parking lot | 43.4 | 48.4 | 41.7 | 40.3 | 56.3 | 61.8 | 69.5(+21.1) | 64.4 | |
residential | 60.6 | 62.3 | 62.4 | 63.4 | 70.6 | 73.4 | 74.1 | 74.8(+11.4) | |
tunnel | 68.6 | 47.9 | 83.9 | 90.4 | 77.9 | 82.2(-8.2) | 71.3 | 78.2 | |
weather | clear | 61.0 | 62.0 | 61.9 | 62.4 | 70.6 | 71.6 | 71.6 | 72.1(+9.7) |
foggy | 44.3 | 49.2 | 40.2 | 49.8 | 63.3 | 75.2(+25.4) | 63.5 | 59.4 | |
overcast | 65.1 | 67.0 | 66.2 | 67.6 | 77.6 | 79.4 | 79.3 | 80.2(+12.6) | |
partly cloud | 64.4 | 65.3 | 66.4 | 66.5 | 77.1 | 78.0 | 79.2(+12.7) | 78.6 | |
rainy | 58.3 | 60.2 | 60.8 | 59.3 | 69.6 | 70.9 | 71.7(+10.9) | 71.5 | |
snowy | 61.6 | 62.6 | 63.8 | 62.5 | 71.4 | 72.6 | 73.9(+10.1) | 73.9 |
表6 改进YOLOv5和YOLOv5鲁棒性测试结果
Table 6 Improved YOLOv5 and YOLOv5 robustness test results %
Condition | YOLOv5s | YOLOv5m | YOLOv5l | YOLOv5x | I-YOLOv5s | I-YOLOv5m | I-YOLOv5l | I-YOLOv5x | |
---|---|---|---|---|---|---|---|---|---|
size | small | 59.3 | 60.4 | 60.3 | 60.7 | 69.9 | 71.2 | 71.5 | 71.9(+11.2) |
medium | 76.3 | 78.7 | 79.0 | 79.3 | 85.6 | 86.6 | 87.2(+7.9) | 87.2 | |
large | 34.2 | 48.6 | 33.5 | 37.0 | 56.6 | 68.0(+19.4) | 53.5 | 66.1 | |
time | dawn/dusk | 60.1 | 62.6 | 62.3 | 62.8 | 73.5 | 74.9 | 75.5 | 75.8(+13.0) |
daytime | 63.5 | 64.9 | 65.0 | 65.8 | 76.1 | 77.9 | 78.5 | 78.6(+12.8) | |
night | 58.9 | 59.7 | 59.8 | 59.5 | 66.8 | 67.4 | 67.5 | 68.1(+8.3) | |
scene | city street | 62.3 | 63.5 | 63.7 | 63.9 | 73.0 | 74.2 | 74.5(+10.6) | 74.9 |
gas station | 71.6 | 54.9 | 56.9 | 54.3 | 58.7 | 72.1 | 77.3 | 80.4(+8.8) | |
highway | 56.7 | 58.0 | 57.7 | 58.1 | 67.9 | 68.4 | 69.5 | 69.6(+11.5) | |
parking lot | 43.4 | 48.4 | 41.7 | 40.3 | 56.3 | 61.8 | 69.5(+21.1) | 64.4 | |
residential | 60.6 | 62.3 | 62.4 | 63.4 | 70.6 | 73.4 | 74.1 | 74.8(+11.4) | |
tunnel | 68.6 | 47.9 | 83.9 | 90.4 | 77.9 | 82.2(-8.2) | 71.3 | 78.2 | |
weather | clear | 61.0 | 62.0 | 61.9 | 62.4 | 70.6 | 71.6 | 71.6 | 72.1(+9.7) |
foggy | 44.3 | 49.2 | 40.2 | 49.8 | 63.3 | 75.2(+25.4) | 63.5 | 59.4 | |
overcast | 65.1 | 67.0 | 66.2 | 67.6 | 77.6 | 79.4 | 79.3 | 80.2(+12.6) | |
partly cloud | 64.4 | 65.3 | 66.4 | 66.5 | 77.1 | 78.0 | 79.2(+12.7) | 78.6 | |
rainy | 58.3 | 60.2 | 60.8 | 59.3 | 69.6 | 70.9 | 71.7(+10.9) | 71.5 | |
snowy | 61.6 | 62.6 | 63.8 | 62.5 | 71.4 | 72.6 | 73.9(+10.1) | 73.9 |
ACBlock | SoftPool | DSConv | Our FPN | | | | | A mAP I |
---|---|---|---|---|---|---|---|---|
— | — | — | — | 57.6 | 62.4 | 61.1 | 59.9 | |
√ | — | — | — | 62.8 | 67.5 | 64.3 | 65.2 | 4.7 |
— | √ | — | — | 60.5 | 65.1 | 63.6 | 62.9 | 2.8 |
— | — | √ | — | 57.2 | 62.1 | 61.0 | 59.6 | -0.2 |
— | — | — | √ | 62.7 | 68.0 | 64.6 | 65.8 | 5.0 |
√ | √ | — | — | 64.6 | 69.4 | 65.5 | 67.2 | 6.4 |
√ | √ | √ | — | 64.6 | 69.2 | 65.0 | 67.2 | 6.3 |
√ | √ | √ | √ | 69.3 | 72.3 | 71.3 | 71.0 | 10.8 |
表7 以YOLOv5l为基础模型的鲁棒性消融实验
Table 7 Robust ablation experiment based on YOLOv5l
ACBlock | SoftPool | DSConv | Our FPN | | | | | A mAP I |
---|---|---|---|---|---|---|---|---|
— | — | — | — | 57.6 | 62.4 | 61.1 | 59.9 | |
√ | — | — | — | 62.8 | 67.5 | 64.3 | 65.2 | 4.7 |
— | √ | — | — | 60.5 | 65.1 | 63.6 | 62.9 | 2.8 |
— | — | √ | — | 57.2 | 62.1 | 61.0 | 59.6 | -0.2 |
— | — | — | √ | 62.7 | 68.0 | 64.6 | 65.8 | 5.0 |
√ | √ | — | — | 64.6 | 69.4 | 65.5 | 67.2 | 6.4 |
√ | √ | √ | — | 64.6 | 69.2 | 65.0 | 67.2 | 6.3 |
√ | √ | √ | √ | 69.3 | 72.3 | 71.3 | 71.0 | 10.8 |
[1] |
KANOPOULOS N, VASANTHAVADA N, BAKER R L. Design of an image edge detection filter using the Sobel operator[J]. IEEE Journal of Solid-State Circuits, 1988, 23(2):358-367.
DOI URL |
[2] | ILLINGWORTH J, KITTLER J. The adaptive Hough trans-form[J]. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 1987(5):690-698. |
[3] | DUAN K B, KEERTHI S S. Which is the best multiclass SVM method? An empirical study[C]// LNCS 3541: Procee-dings of the International Workshop on Multiple Classifier Systems, Seaside, Jun 13-15, 2005. Berlin, Heidelberg: Sp-ringer, 2005: 278-285. |
[4] | OMACHI M, OMACHI S. Traffic light detection with color and edge information[C]// Proceedings of the 2009 2nd IEEE International Conference on Computer Science and Information Technology, Beijing, Aug 8-11, 2009. Piscata-way: IEEE, 2009: 284-287. |
[5] | LI Y, CAI Z, GU M, et al. Notice of retraction: traffic lights recognition based on morphology filtering and statistical classification[C]// Proceedings of the 2011 7th Interna-tional Conference on Natural Computation, Shanghai, Jul 26-28, 2011. Washington: IEEE Computer Society, 2011: 1700-1704. |
[6] | SERMANET P, EIGEN D, ZHANG X, et al. Overfeat: inte-grated recognition, localization and detection using convo-lutional networks[J]. arXiv:1312.6229, 2013. |
[7] | FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[J]. arXiv:1701.06659, 2017. |
[8] | LI Z, ZHOU F. FSSD: feature fusion single shot multibox detector[J]. arXiv:1712.00960, 2017. |
[9] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37. |
[10] | BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020. |
[11] | REDMON J, FARHADI A. YOLOv3: an incremental imp-rovement[J]. arXiv:1804.02767, 2018. |
[12] | Ultralytics. YOLOv5[EB/OL]. [2021-03-14]. https://github.com/ultralytics/yolov5. |
[13] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Procee-dings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Was-hington: IEEE Computer Society, 2016: 779-788. |
[14] | REDMON J, FARHADI A. YOLO9000: better, faster, stron-ger[C]// Proceedings of the 2017 IEEE Conference on Com-puter Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7263-7271. |
[15] | TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-tion, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 10781-10790. |
[16] | DAI J, LI Y, HE K, et al. R-FCN: object detection via region-based fully convolutional networks[J]. arXiv:1605.06409, 2016. |
[17] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and se-mantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 20-23, 2014. Washington: IEEE Computer Society, 2014: 580-587. |
[18] | GIRSHICK R B. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1440-1448. |
[19] | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. arXiv:1506.01497, 2015. |
[20] |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
DOI URL |
[21] | MANANA M, TU C, OWOLAWI P A. Preprocessed faster RCNN for vehicle detection[C]// Proceedings of the 2018 International Conference on Intelligent and Innovative Com-puting Applications, Plaine Magnien, Dec 6-7, 2018. Washing-ton: IEEE Computer Society, 2018: 1-4. |
[22] | WANG C, ZHANG G W, ZHOU W, et al. Traffic lights detection based on deep learning feature[C]// Proceedings of the 2019 International Conference on Internet of Things as a Service, Zurich, Nov 23-24, 2019. Cham: Springer, 2019: 382-396. |
[23] | LIU J, ZHANG D. Research on vehicle object detection algorithm based on improved YOLOv3 algorithm[J]. Pro-ceedings of the Journal of Physics: Conference Series, 2020, 1575(1):012150. |
[24] | THIPSANTHIA P, CHAMCHONG R, SONGRAM P. Road sign detection and recognition of Thai traffic based on YOLOv3[C]// LNCS 11909: Proceedings of the 13th Inter-national Conference on Multi-disciplinary Trends in Arti-ficial Intelligence, Kuala, Nov 17-19, 2019. Cham: Sprin-ger, 2019: 271-279. |
[25] | CHOI J, CHUN D, KIM H, et al. Gaussian YOLOv3: an accurate and fast object detector using localization uncer-tainty for autonomous driving[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 502-511. |
[26] | YU F, CHEN H F, WANG X, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 2633-2642. |
[27] | WANG C Y. LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// Proceedings of the 2020 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 1571-1580. |
[28] | DING X H, GUO Y C, DING G G, et al. ACNet: streng-thening the kernel skeletons for powerful CNN via asym-metric convolution blocks[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1911-1920. |
[29] | STERGIOU A, POPPE R, KALLIATAKIS G. Refining ac-tivation downsampling with SoftPool[J]. arXiv:2101.00440, 2021. |
[30] | LIN T Y. DOLLÁR P, GIRSHICK R B, et al. Feature py-ramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 936-944. |
[31] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-tion, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 8759-8768. |
[32] | BEHRENDT K, NOVAK L, BOTROS R. A deep learning approach to traffic lights: detection, tracking, and classifica-tion[C]// Proceedings of the 2017 IEEE International Con-ference on Robotics and Automation, Singapore, May 29-Jun 3, 2017. Piscataway: IEEE, 2017: 1370-1377. |
[33] | CHENG Z W, WANG Z Y, HUANG H C, et al. Dense-ACSSD for end-to-end traffic scenes recognition[C]// Pro-ceedings of the 2019 IEEE Intelligent Vehicles Symposium, Paris, Jun 9-12, 2019. Piscataway: IEEE, 2019: 460-465. |
[1] | 林强,张淋均,谢艾伶,王维兰. 不安全越界行为的个性化实时检测[J]. 计算机科学与探索, 2020, 14(6): 1017-1027. |
[2] | 方峰,蔡志平,肇启佳,林加润,朱明. 使用Spark Streaming的自适应实时DDoS检测和防御技术[J]. 计算机科学与探索, 2016, 10(5): 601-611. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||