[1] ANSEL D T, SEVIN? E, KUCUKYILMAZ T, et al. A survey on new generation metaheuristic algorithms[J]. Computers & Industrial Engineering, 2019, 137: 106040.
[2] NEUMANN F, WITT C. Combinatorial optimization and computational complexity[M]//Bioinspired Computation in Combinatorial Optimization. Berlin, Heidelberg: Springer, 2010.
[3] 刘二辉, 姚锡凡, 刘敏, 等. 基于改进灰狼优化算法的自动导引小车路径规划及其实现原型平台[J]. 计算机集成制造系统, 2018, 24(11): 2779-2791.
LIU E H, YAO X F, LIU M, et al. AGV path planning based on improved grey wolf optimization algorithm and its implementation prototype platform[J]. Computer Integrated Manufacturing Systems, 2018, 24(11): 2779-2791.
[4] 史春天, 曾艳阳, 侯守明. 群体智能算法在图像分割中的应用综述[J]. 计算机工程与应用, 2021, 57(8): 36-47.
SHI C T, ZENG Y Y, HOU S M. Summary of application of swarm intelligence algorithms in image segmentation[J].Computer Engineering and Applications, 2021, 57(8): 36-47.
[5] 王贞, 李旭飞. 精英学习人工蜂群算法的PID控制器参数优化[J]. 数学的实践与认识, 2020, 50(16): 177-186.
WANG Z, LI X F. An enlite learning artificial bee colony algorithm for parameter optimization of PID controller[J].Mathematics in Practice and Theory, 2020, 50(16): 177-186.
[6] FARAMARZI A, HEIDARINEJAD M, BRENT STEPHENS B E, et al. Equilibrium optimizer: a novel optimization algorithm[J]. Knowledge-Based Systems, 2020, 191: 105190.
[7] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 International Conference on Neural Networks, Perth, Nov 27-Dec 1, 1995. Piscataway:IEEE, 1995: 1942-1948.
[8] HOLLAND J H. Adaptation in natural and artificial systems[R]. Ann Arbor: University of Michigan, 1975.
[9] DAS S S P N. Differential evolution: a survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4-31.
[10] 张哲辰, 刘三阳. 基于拓扑改进与交叉策略的萤火虫算法[J]. 计算机工程与应用, 2019, 55(7): 1-8.
ZHANG Z C, LIU S Y. Firefly algorithm based on topology improvement and crossover strategy[J]. Computer Engineering and Applications, 2019, 55(7): 1-8.
[11] FAN Q, HUANG H, YANG K, et al. A modified equilibrium optimizer using opposition-based learning and novel update rules[J]. Expert Systems with Applications, 2021, 170: 114575.
[12] SAYED G I, KHORIBA G, HAGGAG M H. A novel chaotic equilibrium optimizer algorithm with S-shaped and V-shaped transfer functions for feature selection[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(6): 3137-3162.
[13] DINKAR S K, DEEP K, MIRJALILI S, et al. Opposition-based Laplacian equilibrium optimizer with application in image segmentation using multilevel thresholding[J]. Expert Systems with Applications, 2021, 174: 114766.
[14] AHMED S, GHOSH K K, MIRJALILI S, et al. AIEOU: automata-based improved equilibrium optimizer with U-shaped transfer function for feature selection[J]. Knowledge- Based Systems, 2021, 228: 107283.
[15] KARDANI N, BARDHAN A, GUPTA S, et al. Predicting permeability of tight carbonates using a hybrid machine learning approach of modified equilibrium optimizer and extreme learning machine[J]. Acta Geotechnica, 2022, 17: 1239-1255.
[16] SHANKAR N, SARAVANAKUMAR N, KUMAR C, et al. Opposition-based equilibrium optimizer algorithm for identification of equivalent circuit parameters of various photovoltaic models[J]. Journal of Computational Electronics, 2021, 20: 1560-1587.
[17] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.
[18] FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al. Marine predators algorithm: a nature-inspired metaheuristic[J]. Expert Systems with Applications, 2020, 152: 113377.
[19] KAUR S, AWASTHI L K, SANGAL A L, et al. Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization[J]. Engineering Applications of Artificial Intelligence, 2020, 90: 103541.
[20] DERRAC J, GARCíA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm & Evolutionary Computation, 2011, 1(1): 3-18.
[21] ZHANG J Q, SANDERSON A C. JADE: adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945-958.
[22] BREST J, GREINER S, BOSKOVIC B, et al. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 646-657.
[23] QIN A K, SUGANTHAN P N. Self-adaptive differential evolution algorithm for numerical optimization[C]//Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, Sep 2-4, 2005. Piscataway: IEEE, 2005: 1785-1791.
[24] CUI L Z, ZHANG K, LI G H, et al. Modified Gbest-guided artificial bee colony algorithm with new probability model[J]. Soft Computing, 2018, 22(7): 2217-2243.
[25] ZHU G P, SAM K. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173.
[26] GAO W F, LIU S Y. A modified artificial bee colony algorithm[J]. Computers and Operations Research, 2012, 39(3): 687-697.
[27] KIRAN M S, HAKLI H, GüNDüZ M, et al. Artificial bee colony algorithm with variable search strategy for continuous optimization[J]. Information Sciences, 2015, 300: 140-157.
[28] CUI L Z, LI G H, LIN Q Z, et al. A novel artificial bee colony algorithm with depth-first search framework and elite-guided search equation[J]. Information Sciences, 2016, 367/368: 1012-1044.
[29] 陈忠云, 张达敏, 辛梓芸. 多子群的共生非均匀高斯变异樽海鞘群算法[J]. 自动化学报, 2022, 48(5): 1307-1317.
CHEN Z Y, ZHANG D M, XIN Z Y. Multi-subpopulation based symbiosis and non-uniform Gaussian mutation salp swarm algorithm[J]. Acta Automatica Sinica, 2022, 48(5): 1307-1317.
[30] PADMAVATHI K, RAMAKRISHNA K S. Hybrid firefly and particle swarm optimization algorithm for the detection of bundle branch block[J]. International Journal of the Cardiovascular Academy, 2016, 2(1): 44-48.
[31] ARUNACHALAM S, AGNESBHOMILA T, BABU M R. Hybrid particle swarm optimization algorithm and firefly algorithm based combined economic and emission dispatch including valve point effect[C]//LNCS 8947: Proceedings of the 5th International Conference on Swarm, Evolutionary, and Memetic Computing, Bhubaneswar, Dec 18-20, 2014.Cham: Springer, 2014: 647-660.
[32] AYDILEK I B. A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems[J]. Applied Soft Computing, 2018, 66: 232-249.
[33] CHICKERMANE H, GEA H C. Structural optimization using a new local approximation method[J]. International Journal for Numerical Methods in Engineering, 1996, 39(5):829-846.
[34] GANDOMI A H, YANG X S, ALAVI A H. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems[J]. Engineering with Computers, 2013, 29(1): 17-35.
[35] SADOLLAH A, BAHREININEJAD A, ESKANDAR H, et al. Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems[J]. Applied Soft Computing Journal, 2013, 13(5): 2592-2612.
[36] ZHANG M, LUO W J, WANG X F. Differential evolution with dynamic stochastic selection for constrained optimization[J]. Information Sciences, 2008, 178(15): 3043-3074.
[37] YILDIRIM A E, KARCI A. Application of three bar truss problem among engineering design optimization problems using artificial atom algorithm[C]//Proceedings of the 2018 International Conference on Artificial Intelligence and Data Processing, Malatya, Sep 28-30, 2018. Piscataway: IEEE, 2018: 1-5.
[38] RAY T, SAINI P. Engineering design optimization using a swarm with an intelligent information sharing among individuals[J]. Engineering Optimization, 2001, 33(6): 735-748. |