[1] XUE J, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[2] 王林, 宋蓓, 张友卫, 等. 考虑父节点的贝叶斯网络故障路径追溯算法[J]. 计算机科学与探索, 2018, 12(11): 1796-1805.
WANG L, SONG B, ZHANG Y W, et al. Bayesian-network-based fault path tracking algorithm considering parent nodes[J]. Journal of Frontiers of Computer Science and Techno-logy, 2018, 12(11): 1796-1805.
[3] 孙怀英, 虞慧群, 范贵生, 等. 支持SDN的Hadoop中的时间最小化任务调度[J]. 计算机科学与探索, 2018, 12(11): 1767-1776.
SUN H Y, YU H Q, FAN G S, et al. Time minimized task scheduling in Hadoop with SdN[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(11): 1767-1776.
[4] 王振东, 汪嘉宝, 李大海. 一种增强型麻雀搜索算法的无线传感器网络覆盖优化研究[J]. 传感技术学报, 2021, 34(6): 818-828.
WANG Z D, WANG J B, LI D H. Study on WSN optimization coverage of an enhanced sparrow search algorithm[J]. Chinese Journal of Sensors and Actuators, 2021, 34(6): 818-828.
[5] 孟志军, 刘淮玉, 安晓飞, 等. 基于SPA-SSA-BP的小麦秸秆含水率检测模型[J]. 农业机械学报, 2022, 53(2): 231-238.
MENG Z J, LIU H Y, AN X F, et al. Prediction model of wheat straw moisture content based on SPA-SSA-BP[J]. Tran-sactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 231-238.
[6] 毛清华, 张强. 融合柯西变异和反向学习的改进麻雀算法[J]. 计算机科学与探索, 2021, 15(6): 1155-1164.
MAO Q H, ZHANG Q. Improved sparrow algorithm com-bining Cauchy mutation and opposition-based learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1155-1164.
[7] 张琳, 汪廷华, 周慧颖. 一种多策略改进的麻雀搜索算法[J]. 计算机工程与应用, 2022, 58(11): 133-140.
ZHANG L, WANG T H, ZHOU H Y. Multi-strategy imp-roved sparrow search algorithm[J]. Computer Engineering and Applications, 2022, 58(11): 133-140.
[8] 尹德鑫, 张达敏, 蔡朋宸, 等. 改进的麻雀搜索优化算法及其应用[J]. 计算机工程与科学, 2022, 44(10): 1844-1851.
YIN D X, ZHANG D M, CAI P C, et al. An improved sparrow search optimization algorithm and its application[J]. Computer Engineering and Science, 2022, 44(10): 1844-1851.
[9] 张伟康, 刘升, 任春慧. 混合策略改进的麻雀搜索算法[J]. 计算机工程与应用, 2021, 57(24): 74-82.
ZHANG W K, LIU S, REN C H. Mixed strategy improved sparrow search algorithm[J]. Computer Engineering and Applications, 2021, 57(24): 74-82.
[10] RAHNAMAYAN S, JESUTHASAN J, BOURENNANI F, et al. Computing opposition by involving entire population[C]//Proceedings of the 2014 IEEE Congress on Evolutio-nary Computation, Beijing, Jul 6-11, 2014. Piscataway: IEEE, 2014: 1800-1807.
[11] 付华, 刘昊. 多策略融合的改进麻雀搜索算法及其应用[J]. 控制与决策, 2022, 37(1): 87-96.
FU H, LIU H. Improved sparrow search algorithm based on multi-strategy fusion and its application[J]. Control and Deci-sion, 2022, 37(1): 87-96.
[12] 温泽宇, 谢珺, 谢刚, 等. 基于新型拥挤度距离的多目标麻雀搜索算法[J]. 计算机工程与应用, 2021, 57(22): 102-109.
WEN Z Y, XIE J, XIE G, et al. Multi-objective sparrow search algorithm based on new crowding distance[J]. Com-puter Engineering and Applications, 2021, 57(22): 102-109.
[13] TANYILDIZI E, DEMIR G. Golden sine algorithm: a novel math-inspired algorithm[J]. Advances in Electrical and Com-puter, 2017, 17(2): 71-78.
[14] 吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学学报, 2021, 47(8): 1712-1720.
LV X, MU X D, ZHANG J, et al. Chaotic sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720.
[15] 李爱莲, 全凌翔, 崔桂梅, 等. 融合正余弦和柯西变异的麻雀搜索算法[J]. 计算机工程与应用, 2022, 58(3): 91-99.
LI A L, QUAN L X, CUI G M, et al. Sparrow search algorithm combining sine-cosine and Cauchy mutation[J]. Computer Engineering and Applications, 2022, 58(3): 91-99.
[16] 陈宗淦, 詹志辉. 面向多峰优化问题的双层协同差分进化算法[J]. 计算机学报, 2021, 44(9): 1806-1823.
CHEN Z G, ZHAN Z H. Two-layer collaborative differen-tial evolution algorithm for multimodal optimization problems[J]. Chinese Journal of Computers, 2021, 44(9): 1806-1823.
[17] JIA D L, ZHENG G X, KHAN M K. An effective memetic differential evolution algorithm based on chaotic local search[J]. Information Sciences, 2011, 181(15): 3175-3187.
[18] XIANG T, LIAO X F, WONG K. An improved particle swarm optimization algorithm combined with piecewise linear chaotic map[J]. Applied Mathematics and Computation, 2007, 190(2): 1637-1645.
[19] HE L J, LI W F, ZHANG Y, et al. A discrete multi-objective fireworks algorithm for flowshop scheduling with sequence-dependent setup times[J]. Swarm and Evolutionary Com-putation, 2019: 51.
[20] WANG X P, TANG L X. A machine-learning based memetic algorithm for the multi-objective permutation flowshop sche-duling problem[J]. Computers & Operations Research, 2017, 79: 60-77.
[21] 何庆, 罗仕杭. 混合改进策略的黑猩猩优化算法及其机械应用[J]. 控制与决策, 2023, 38(2): 354-364.
HE Q, LUO S H. Chimp optimization algorithm based on hybrid improvement strategy and its mechanical application[J]. Control and Decision, 2023, 38(2): 354-364.
[22] 刘成汉, 何庆. 融合多策略的黄金正弦黑猩猩优化算法[J]. 自动化学报, 2021. DOI: 10.16383/j.aas.c210313.
LIU C H, HE Q. Golden sine chimp optimization algorithm integrating multiple strategies[J]. Acta Automatica Sinica, 2021. DOI: 10.16383/j.aas.c210313.
[23] 肖辉辉, 段艳明, 林芳. 新搜索策略的花授粉算法[J]. 电子测量与仪器学报, 2019, 33(7): 11-20.
XIAO H H, DUAN Y M, LIN F. Flower pollination algor-ithm with new search strategies[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(7): 11-20.
[24] WETS J B. Minimization by random search techniques[J]. Mathematics of Operations Research, 1981, 6(1): 19-30.
[25] YANG D, LIU Z, ZHOU J. Chaos optimization algorithms based on chaotic maps with different probability distri-bution and search speed for global optimization[J]. Com-munications in Nonlinear Science & Numerical, 2014, 19(4): 1229-1246.
[26] GAO S, YU Y, WANG Y, et al. Chaotic local search-based differential evolution algorithms for optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(6): 3954-3967.
[27] YANG D X, LI G, CHENG G D. On the efficiency of chaos optimization algorithms for global optimization[J]. Chaos Solitons Fractals, 2007, 34(4): 1366-1375. |