[1] HOLLAND J H. Adaptation in natural and artificial system[M]. Michigan: University of Michigan Press, 1975.
[2] MA Y J, YUN W X. Research progress of genetic algorithm[J]. Application Research of Computers, 2012, 29(4): 1201-1206.
马永杰, 云文霞. 遗传算法研究进展[J]. 计算机应用研究, 2012, 29(4): 1201-1206.
[3] CHEN Q, HUANG M X, XU Q N, et al. Reinforcement learning-based genetic algorithm in optimizing multidimensional data discretization scheme[J]. Mathematical Problems in Engineering, 2020(3): 1-13.
[4] XU X Y, LIU W W, FU D, et al. An improved genetic algorithm to solve the course scheduling problem in the context of new college entrance examinations[J]. Journal of East China Normal University (Natural Science), 2020(4): 108-123.
徐向阳, 刘文伟, 傅蝶, 等. 改进遗传算法求解新高考背景下的排课问题[J]. 华东师范大学学报(自然科学版), 2020(4): 108-123.
[5] LI Z B, HOU S W, CHENG H H. Method for initial population of TSP[J]. Computer Engineering and Applications, 2016, 52(17): 172-176.
李志宾, 侯世旺, 程厚虎. 一种求解TSP初始化种群问题的方法[J]. 计算机工程与应用, 2016, 52(17): 172-176.
[6] LIU Y, ZHANG C. Application of dueling DQN and DECGA for parameter estimation in variogram models[J]. IEEE Access, 2020, 8: 38112-38122.
[7] WANG B N, GAO Y, CHEN Z Q, et al. RLGA: a reinforcement learning based genetic algorithm[J]. Acta Electronica Sinica, 2006, 34(5): 856-860.
王本年, 高阳, 陈兆乾, 等. RLGA: 一种基于强化学习机制的遗传算法[J]. 电子学报, 2006, 34(5): 856-860.
[8] WANG X Y, LIU Q, FU Q M, et al. Multiple policy selection genetic algorithm based on reinforcement learning[J]. Computer Engineering, 2011, 37(8): 149-152.
王晓燕, 刘全, 傅启明, 等. 基于强化学习的多策略选择遗传算法[J]. 计算机工程, 2011, 37(8): 149-152.
[9] LIU Q, ZHAI J W, ZHANG Z Z, et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41(1): 1-27.
刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1-27.
[10] ZHAO T T, KONG L, HAN Y J, et al. Review of model-based reinforcement learning[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 918-927.
赵婷婷, 孔乐, 韩雅杰, 等. 模型化强化学习研究综述[J]. 计算机科学与探索, 2020, 14(6): 918-927.
[11] QU Z S, LIU S L. Convergence analysis means of simple genetic algorithm[J]. Journal of Harbin University of Science and Technology, 2003, 27(1): 42-45.
曲中水, 刘淑兰. 基本遗传算法的收敛性分析方法[J]. 哈尔滨理工大学学报, 2003, 27(1): 42-45.
[12] CHEN J T, XIANG Y. Survey of unstable gradients in deep neural network training[J]. Journal of Software, 2018, 29(7): 2071-2091.
陈建廷, 向阳. 深度神经网络训练中梯度不稳定现象研究综述[J]. 软件学报, 2018, 29(7): 2071-2091.
[13] HAARNOJA T, ZHOU A, HARTIKAINEN K, et al. Soft actor-critic algorithms and applications[J]. arXiv:1812.05905, 2018.
[14] ZHANG N P, WU X, ZHU Q. Entropy-based oversampling framework[J]. Computer Engineering and Applications, 2021, 57(13): 96-101.
张念蓬, 吴旭, 朱强. 基于熵的过采样框架[J]. 计算机工程与应用, 2021, 57(13): 96-101.
[15] SCHULMAN J, LEVINE S, MORITZ P, et al. Trust region policy optimization[J]. arXiv:1502.05477, 2015.
[16] SCHUMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv:1707.06347, 2017.
[17] HAARNOJA T, TANG H, ABBEEL P, et al. Reinforcement learning with deep energy-based policies[J]. arXiv:1702. 08165, 2017.
[18] PAN J W, QIAN Q, FU Y F, et al. Multi-population genetic algorithm based on optimal weight dynamic control learning mechanism[J/OL]. Journal of Frontiers of Computer Science and Technology (2020-09-27)[2020-12-17]. http://kns.cnki.net/kcms/detail/11.5602.TP.20200927.1428.004.html.
潘家文, 钱谦, 伏云发, 等. 最优权动态控制学习机制的多种群遗传算法[J/OL]. 计算机科学与探索(2020-09-27)[2020-12-17]. http://kns.cnki.net/kcms/detail/11.5602.TP.20200927. 1428.004.html.
[19] WANG Z, LIU R M, ZHU Y G, et al. Improved genetic algorithm for solving TSP problem[J]. Electronic Measurement Technology, 2019, 42(23): 91-96.
王震, 刘瑞敏, 朱阳光, 等. 一种求解TSP问题的改进遗传算法[J]. 电子测量技术, 2019, 42(23): 91-96.
[20] CHEN W. The application of the evolutionary computation for optimal problem[D]. Wuhan: Wuhan University of Technology, 2010.
陈伟. 进化计算在优化问题中的应用[D]. 武汉: 武汉理工大学, 2010.
[21] REN Z W, SAN Y. Improved adaptive genetic algorithm and its application research in parameter identification[J]. Journal of System Simulation, 2006, 18(1): 41-43.
任子武, 伞冶. 自适应遗传算法的改进及在系统辨识中应用研究[J]. 系统仿真学报, 2006, 18(1): 41-43.
[22] FENG A L, WANG C X, KONG J L. Improved genetic algorithm for solving order batching optimization model[J]. Computer Engineering and Applications, 2020, 56(8): 261-269.
冯爱兰, 王晨西, 孔继利. 改进遗传算法求解订单分批优化模型[J]. 计算机工程与应用, 2020, 56(8): 261-269.
[23] CHRISTODOULOU P. Soft actor-critic for discrete action settings[J]. arXiv:1910.07207, 2019.
[24] VYAS A, CHAWLA D K, THAKAR U. Dynamic simulated annealing for solving the traveling salesman problem with cooling enhancer and modified acceptance probability[J]. International Journal of Scientific and Research Publications, 2018, 8(3): 213-220.
[25] DORIGO M, LUCA M G. Ant colonies for the traveling salesman problem[J]. BioSystems, 1997, 43(2): 73-81.
[26] WU H S, ZHANG F M, LI H, et al. Discrete wolf pack algorithm for traveling salesman problem[J]. Control and Decision, 2015, 30(10): 1861-1867.
吴虎胜, 张凤鸣, 李浩, 等. 求解TSP问题的离散狼群算法[J]. 控制与决策, 2015, 30(10): 1861-1867.
[27] CHEN S M, CHIEN C Y. Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques[J]. Expert Systems with Applications, 2011, 38(12): 14439-14450.
[28] DONG G, GUO W W, TICKLE K. Solving the traveling salesman problem using cooperative genetic ant systems[J]. Expert Systems with Applications, 2012, 39(5): 5006-5011.
[29] GüNDüZ M, KIRAN M S, ?ZCEYLAN E. A hierarchic approach based swarm intelligence to traveling salesman problem[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2015, 23(1): 103-117.
[30] OSABA E, YANG X S, DIAZ F, et al. An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems[J]. Engineering Applications of Artificial Intelligence, 2016, 48(C): 59-71.
[31] HE Q, WU Y L, XU T W. Application of improved genetic simulated annealing algorithm in TSP optimization[J]. Control and Decision, 2018, 33(2): 219-225.
何庆, 吴意乐, 徐同伟. 改进遗传模拟退火算法在TSP优化中的应用[J]. 控制与决策, 2018, 33(2): 219-225.
[32] ZHANG Q Y, PAN Z X, LEI D M, et al. New imperialist competitive algorithm for solving traveling salesman problem[J]. Journal of Wuhan University of Technology, 2018, 40(6): 89-97.
张清勇, 潘子肖, 雷德明, 等. 求解旅行商问题的新型帝国竞争算法[J]. 武汉理工大学学报, 2018, 40(6): 89-97.
[33] LI J, YOU X M, LIU S, et al. Adaptive fuzzy ant colony system[J]. Computer Engineering and Applications, 2019, 55(15): 75-81.
李娟, 游晓明, 刘升, 等. 自适应模糊蚁群系统[J]. 计算机工程与应用, 2019, 55(15): 75-81.
[34] DAI H J, KHALIL E B, ZHANG Y Y, et al. Learning combinatorial optimization algorithms over graphs[J]. arXiv: 1704.01665, 2017.
[35] WU Y X, SONG W, CAO Z G, et al. Learning improvement heuristics for solving routing problems[J]. arXiv:1912. 05784, 2019.
[36] DA COSTA P R D O, RHUGGENAATH J, ZHANG Y Q, et al. Learning 2-opt heuristics for the traveling salesman problem via deep reinforcement learning[J]. arXiv:2004. 01608, 2020. |