[1] MOLLá D, VICEDO J L. Question answering in restricted domains: an overview[J]. Computational Linguistics, 2007, 33(1): 41-61.
[2] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, Jun 10-12, 2008. New York: ACM, 2008: 1247-1250.
[3] BIZER C, LEHMANN J, KOBILAROV G, et al. DBpedia—a crystallization point for the Web of data[J]. Journal of Web Semantics, 2009, 7(3): 154-165.
[4] XU B, XU Y, LIANG J, et al. CN-DBpedia: a never-ending Chinese knowledge extraction system[C]//LNCS 10351: Proceedings of the 30th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, Arras, Jun 27-30, 2017. Cham: Springer, 2017: 428-438.
[5] CAO M Y, LI Q Q, YANG Z H, et al. A question answering system for primary liver cancer based on knowledge graph[J]. Journal of Chinese Information Processing, 2019, 33(6): 88-93.
曹明宇, 李青青, 杨志豪, 等. 基于知识图谱的原发性肝癌知识问答系统[J]. 中文信息学报, 2019, 33(6): 88-93.
[6] ZHANG Y Y, QIAN S S, FANG Q, et al. Multi-modal knowledge-aware attention network for question answering[J]. Computer Research and Development, 2020, 57(5): 1037-1045.
张莹莹, 钱胜胜, 方全, 等. 基于多模态知识感知注意力机制的问答方法[J]. 计算机研究与发展, 2020, 57(5): 1037-1045.
[7] ABUJABAL A, YAHYA M, RIEDEWALD M, et al. Automated template generation for question answering over knowledge graphs[C]//Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 1191-1200.
[8] KROMPA? D, BAIER S, TRESP V. Type-constrained representation learning in knowledge graphs[C]//Proceedings of the 14th International Semantic Web Conference, Bethlehem, Oct 11-15. Cham: Springer, 2015: 640-655.
[9] DONG L, WEI F R, ZHOU M, et al. Question answering over Freebase with multi-column convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 260-269.
[10] LUO K, LIN F, LUO X, et al. Knowledge base question answering via encoding of complex query graphs[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 2185-2194.
[11] YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[J]. arXiv:1412.6575, 2014.
[12] YIH S W, CHANG M W, HE X, et al. Semantic parsing via staged query graph generation: question answering with knowledge base[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 1321-1331.
[13] YAO X, VAN DURME B. Information extraction over structured data: question answering with Freebase[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, Jun 22-27, 2014. Stroudsburg: ACL, 2014: 956-966.
[14] SUN H, DHINGRA B, ZAHEER M, et al. Open domain question answering using early fusion of knowledge bases and text[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 4231-4242.
[15] SUN H, BEDRAX-WEISS T, COHEN W W. PullNet: open domain question answering with iterative retrieval on know-ledge bases and text[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 2380-2390.
[16] LI D C, ZHANG J Y, LI P. Representation learning for question classification via topic sparse autoencoder and entity embedding[C]//Proceedings of the 2018 IEEE International Conference on Big Data, Seattle, Dec 10-13, 2018. Piscataway: IEEE, 2018: 126-133.
[17] LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[J/OL]. (2019-07-26) [2020-06-20]. https://arxiv.org/abs/1907.11692.pdf.
[18] DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271.
[19] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//LNCS 10843: Proceedings of the 15th European Semantic Web Conference, Heraklion, Jun 3-7, 2018. Cham: Springer, 2018: 593-607.
[20] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 2071-2080.
[21] KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015.
[22] BERANT J, CHOU A, FROSTIG R, et al. Semantic parsing on Freebase from question-answer pairs[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, Oct 18-21, 2013. Stroudsburg: ACL, 2013: 1533-1544.
[23] MILLER A, FISCH A, DODGE J, et al. Key-value memory networks for directly reading documents[J]. arXiv:1606. 03126, 2016.
[24] XU K, LAI Y X, FENG Y S, et al. Enhancing key-value memory neural networks for knowledge based question answering[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 2937-2947. |